logo

Introduzione all'insieme disgiunto (algoritmo di ricerca dell'unione)

Cos'è una struttura dati di insieme disgiunto?

Vengono chiamati due set insiemi disgiunti se non hanno alcun elemento in comune, l’intersezione degli insiemi è un insieme nullo.

Una struttura dati che memorizza un sottoinsieme di elementi non sovrapposti o disgiunti è chiamata struttura dati di insieme disgiunto. La struttura dati dell'insieme disgiunto supporta le seguenti operazioni:



  • Aggiunta di nuovi insiemi all'insieme disgiunto.
  • Unire insiemi disgiunti in un singolo insieme disgiunto utilizzando Unione operazione.
  • Trovare il rappresentante di un insieme disgiunto utilizzando Trovare operazione.
  • Controlla se due insiemi sono disgiunti o meno.

Considera una situazione con un numero di persone e i seguenti compiti da svolgere su di loro:

  • Aggiungere un nuova amicizia relazione , ovvero una persona x diventa amica di un'altra persona y, ovvero aggiunge un nuovo elemento a un insieme.
  • Scopri se individuale x è amico dell'individuo y (amico diretto o indiretto)

Esempi:

Ci vengono dati 10 individui, ad esempio a, b, c, d, e, f, g, h, i, j



Di seguito sono riportate le relazioni da aggiungere:
un b
b d
c f
c io
j e
g j

Date domande come se a è amico di d o no. Fondamentalmente dobbiamo creare i seguenti 4 gruppi e mantenere una connessione rapidamente accessibile tra gli elementi del gruppo:
G1 = {a, b, d}
G2 = {c, f, i}
G3 = {e,g,j}
G4 = {h}

Scopri se x e y appartengono o meno allo stesso gruppo, ovvero se x e y sono amici diretti/indiretti.

Suddividere gli individui in insiemi diversi a seconda dei gruppi in cui rientrano. Questo metodo è noto come a Unione di insiemi disgiunti che mantiene una raccolta di Insiemi disgiunti e ogni insieme è rappresentato da uno dei suoi membri.



Per rispondere alla domanda di cui sopra due punti chiave da considerare sono:

  • Come risolvere i set? Inizialmente, tutti gli elementi appartengono a insiemi diversi. Dopo aver lavorato sulle relazioni date, selezioniamo un membro come a rappresentante . Possono esserci molti modi per selezionare un rappresentante, uno semplice è selezionare con l'indice più grande.
  • Controllare se 2 persone fanno parte dello stesso gruppo? Se i rappresentanti di due individui sono uguali, diventeranno amici.

Le strutture dati utilizzate sono:

Vettore: Viene chiamato un array di numeri interi Genitore[] . Se abbiamo a che fare con N elementi, l'i-esimo elemento dell'array rappresenta l'i-esimo elemento. Più precisamente, l'i-esimo elemento dell'array Parent[] è il genitore dell'i-esimo elemento. Queste relazioni creano uno o più alberi virtuali.

Albero: È un Insieme disgiunto . Se due elementi sono nello stesso albero, allora sono nello stesso albero Insieme disgiunto . Il nodo radice (o il nodo più alto) di ciascun albero è chiamato rappresentante dell'insieme. Ce n'è sempre uno solo rappresentante unico di ciascun set. Una regola semplice per identificare un rappresentante è se 'i' è il rappresentante di un insieme Genitore[i] = i . Se non è il rappresentante del suo set, può essere trovato viaggiando sull'albero finché non troviamo il rappresentante.

Operazioni su strutture dati di insiemi disgiunti:

  1. Trovare
  2. Unione

1. Trova:

Può essere implementato attraversando ricorsivamente l'array genitore finché non raggiungiamo un nodo che è il genitore di se stesso.

C++




// Finds the representative of the set> // that i is an element of> > #include> using> namespace> std;> > int> find(>int> i)> > {> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> }> > // The code is contributed by Nidhi goel>

>

>

Giava




// Finds the representative of the set> // that i is an element of> import> java.io.*;> > class> GFG {> > >static> int> find(>int> i)> > >{> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> >}> }> > // The code is contributed by Nidhi goel>

>

>

Python3




# Finds the representative of the set> # that i is an element of> > def> find(i):> > ># If i is the parent of itself> >if> (parent[i]>=>=> i):> > ># Then i is the representative of> ># this set> >return> i> >else>:> > ># Else if i is not the parent of> ># itself, then i is not the> ># representative of his set. So we> ># recursively call Find on its parent> >return> find(parent[i])> > ># The code is contributed by Nidhi goel>

>

>

C#




using> System;> > public> class> GFG{> > >// Finds the representative of the set> >// that i is an element of> >public> static> int> find(>int> i)> >{> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> >}> }>

>

>

Javascript




> // Finds the representative of the set> // that i is an element of> > function> find(i)> {> > >// If i is the parent of itself> >if> (parent[i] == i) {> > >// Then i is the representative of> >// this set> >return> i;> >}> >else> {> > >// Else if i is not the parent of> >// itself, then i is not the> >// representative of his set. So we> >// recursively call Find on its parent> >return> find(parent[i]);> >}> }> // The code is contributed by Nidhi goel> >

>

>

Complessità temporale : Questo approccio è inefficiente e può richiedere tempo O(n) nel peggiore dei casi.

2. Unione:

Prende due elementi come input e trova i rappresentanti dei loro set utilizzando il file Trovare operazione e infine inserisce uno degli alberi (che rappresenta l'insieme) sotto il nodo radice dell'altro albero.

C++




// Unites the set that includes i> // and the set that includes j> > #include> using> namespace> std;> > void> union>(>int> i,>int> j) {> > >// Find the representatives> >// (or the root nodes) for the set> >// that includes i> >int> irep =>this>.Find(i),> > >// And do the same for the set> >// that includes j> >int> jrep =>this>.Find(j);> > >// Make the parent of i’s representative> >// be j’s representative effectively> >// moving all of i’s set into j’s set)> >this>.Parent[irep] = jrep;> }>

>

>

Giava




import> java.util.Arrays;> > public> class> UnionFind {> >private> int>[] parent;> > >public> UnionFind(>int> size) {> >// Initialize the parent array with each element as its own representative> >parent =>new> int>[size];> >for> (>int> i =>0>; i parent[i] = i; } } // Find the representative (root) of the set that includes element i public int find(int i) { if (parent[i] == i) { return i; // i is the representative of its own set } // Recursively find the representative of the parent until reaching the root parent[i] = find(parent[i]); // Path compression return parent[i]; } // Unite (merge) the set that includes element i and the set that includes element j public void union(int i, int j) { int irep = find(i); // Find the representative of set containing i int jrep = find(j); // Find the representative of set containing j // Make the representative of i's set be the representative of j's set parent[irep] = jrep; } public static void main(String[] args) { int size = 5; // Replace with your desired size UnionFind uf = new UnionFind(size); // Perform union operations as needed uf.union(1, 2); uf.union(3, 4); // Check if elements are in the same set boolean inSameSet = uf.find(1) == uf.find(2); System.out.println('Are 1 and 2 in the same set? ' + inSameSet); } }>

>

>

Python3




# Unites the set that includes i> # and the set that includes j> > def> union(parent, rank, i, j):> ># Find the representatives> ># (or the root nodes) for the set> ># that includes i> >irep>=> find(parent, i)> > ># And do the same for the set> ># that includes j> >jrep>=> find(parent, j)> > ># Make the parent of i’s representative> ># be j’s representative effectively> ># moving all of i’s set into j’s set)> > >parent[irep]>=> jrep>

>

>

C#




using> System;> > public> class> UnionFind> {> >private> int>[] parent;> > >public> UnionFind(>int> size)> >{> >// Initialize the parent array with each element as its own representative> >parent =>new> int>[size];> >for> (>int> i = 0; i { parent[i] = i; } } // Find the representative (root) of the set that includes element i public int Find(int i) { if (parent[i] == i) { return i; // i is the representative of its own set } // Recursively find the representative of the parent until reaching the root parent[i] = Find(parent[i]); // Path compression return parent[i]; } // Unite (merge) the set that includes element i and the set that includes element j public void Union(int i, int j) { int irep = Find(i); // Find the representative of set containing i int jrep = Find(j); // Find the representative of set containing j // Make the representative of i's set be the representative of j's set parent[irep] = jrep; } public static void Main() { int size = 5; // Replace with your desired size UnionFind uf = new UnionFind(size); // Perform union operations as needed uf.Union(1, 2); uf.Union(3, 4); // Check if elements are in the same set bool inSameSet = uf.Find(1) == uf.Find(2); Console.WriteLine('Are 1 and 2 in the same set? ' + inSameSet); } }>

>

>

Javascript




// JavaScript code for the approach> > // Unites the set that includes i> // and the set that includes j> function> union(parent, rank, i, j)> {> > // Find the representatives> // (or the root nodes) for the set> // that includes i> let irep = find(parent, i);> > // And do the same for the set> // that includes j> let jrep = find(parent, j);> > // Make the parent of i’s representative> // be j’s representative effectively> // moving all of i’s set into j’s set)> > parent[irep] = jrep;> }>

>

>

Complessità temporale : Questo approccio è inefficiente e potrebbe portare ad un albero di lunghezza O(n) nel peggiore dei casi.

Ottimizzazioni (Unione per rango/dimensione e compressione del percorso):

L'efficienza dipende fortemente da quale albero si attacca all'altro . Ci sono 2 modi in cui può essere fatto. Il primo è Unione per rango, che considera l'altezza dell'albero come fattore e il secondo è Unione per dimensione, che considera la dimensione dell'albero come fattore mentre collega un albero all'altro. Questo metodo insieme alla compressione del percorso fornisce una complessità di tempo quasi costante.

Compressione del percorso (Modifiche a Trova()):

Accelera la struttura dei dati di comprimendo l'altezza degli alberi. Può essere ottenuto inserendo un piccolo meccanismo di memorizzazione nella cache nel file Trovare operazione. Dai un'occhiata al codice per maggiori dettagli:

C++




// Finds the representative of the set that i> // is an element of.> > #include> using> namespace> std;> > int> find(>int> i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >int> result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }>

>

>

Giava




// Finds the representative of the set that i> // is an element of.> import> java.io.*;> import> java.util.*;> > static> int> find(>int> i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >int> result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }> > // The code is contributed by Arushi jindal.>

>

>

Python3




# Finds the representative of the set that i> # is an element of.> > > def> find(i):> > ># If i is the parent of itself> >if> Parent[i]>=>=> i:> > ># Then i is the representative> >return> i> >else>:> > ># Recursively find the representative.> >result>=> find(Parent[i])> > ># We cache the result by moving i’s node> ># directly under the representative of this> ># set> >Parent[i]>=> result> > ># And then we return the result> >return> result> > # The code is contributed by Arushi Jindal.>

>

>

C#




vikas divyakirti

using> System;> > // Finds the representative of the set that i> // is an element of.> public> static> int> find(>int> i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >int> result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }> > // The code is contributed by Arushi Jindal.>

>

>

Javascript




// Finds the representative of the set that i> // is an element of.> > > function> find(i)> {> > >// If i is the parent of itself> >if> (Parent[i] == i) {> > >// Then i is the representative> >return> i;> >}> >else> {> > >// Recursively find the representative.> >let result = find(Parent[i]);> > >// We cache the result by moving i’s node> >// directly under the representative of this> >// set> >Parent[i] = result;> > >// And then we return the result> >return> result;> >}> }> > // The code is contributed by Arushi Jindal.>

>

>

Complessità temporale : O(log n) in media per chiamata.

Unione per grado :

Prima di tutto, abbiamo bisogno di un nuovo array di numeri interi chiamato rango[] . La dimensione di questo array è la stessa dell'array genitore Genitore[] . Se sono un rappresentante di un insieme, rango[i] è l'altezza dell'albero che rappresenta l'insieme.
Ora ricordiamo che nell’operazione Unione, non importa quale dei due alberi viene spostato sotto l’altro. Ora quello che vogliamo fare è ridurre al minimo l'altezza dell'albero risultante. Se stiamo unendo due alberi (o insiemi), chiamiamoli sinistro e destro, allora tutto dipende da rango di sinistra e il rango di diritto .

  • Se il grado di Sinistra è inferiore al rango di Giusto , allora è meglio spostarsi sinistra sotto destra , perché ciò non cambierà il rango di destra (mentre spostandosi da destra sotto sinistra aumenterebbe l'altezza). Allo stesso modo, se il rango della destra è inferiore al rango della sinistra, allora dovremmo spostarci da destra sotto sinistra.
  • Se i ranghi sono uguali, non importa quale albero va sotto l'altro, ma il rango del risultato sarà sempre maggiore di uno rispetto al rango degli alberi.

C++




// Unites the set that includes i and the set> // that includes j by rank> > #include> using> namespace> std;> > void> unionbyrank(>int> i,>int> j) {> > >// Find the representatives (or the root nodes)> >// for the set that includes i> >int> irep =>this>.find(i);> > >// And do the same for the set that includes j> >int> jrep =>this>.Find(j);> > >// Elements are in same set, no need to> >// unite anything.> >if> (irep == jrep)> >return>;> > >// Get the rank of i’s tree> >irank = Rank[irep],> > >// Get the rank of j’s tree> >jrank = Rank[jrep];> > >// If i’s rank is less than j’s rank> >if> (irank // Then move i under j this.parent[irep] = jrep; } // Else if j’s rank is less than i’s rank else if (jrank // Then move j under i this.Parent[jrep] = irep; } // Else if their ranks are the same else { // Then move i under j (doesn’t matter // which one goes where) this.Parent[irep] = jrep; // And increment the result tree’s // rank by 1 Rank[jrep]++; } }>

>

>

Giava




public> class> DisjointSet {> > >private> int>[] parent;> >private> int>[] rank;> > >// Constructor to initialize the DisjointSet data> >// structure> >public> DisjointSet(>int> size)> >{> >parent =>new> int>[size];> >rank =>new> int>[size];> > >// Initialize each element as a separate set with> >// rank 0> >for> (>int> i =>0>; i parent[i] = i; rank[i] = 0; } } // Function to find the representative (or the root // node) of a set with path compression private int find(int i) { if (parent[i] != i) { parent[i] = find(parent[i]); // Path compression } return parent[i]; } // Unites the set that includes i and the set that // includes j by rank public void unionByRank(int i, int j) { // Find the representatives (or the root nodes) for // the set that includes i and j int irep = find(i); int jrep = find(j); // Elements are in the same set, no need to unite // anything if (irep == jrep) { return; } // Get the rank of i's tree int irank = rank[irep]; // Get the rank of j's tree int jrank = rank[jrep]; // If i's rank is less than j's rank if (irank // Move i under j parent[irep] = jrep; } // Else if j's rank is less than i's rank else if (jrank // Move j under i parent[jrep] = irep; } // Else if their ranks are the same else { // Move i under j (doesn't matter which one goes // where) parent[irep] = jrep; // Increment the result tree's rank by 1 rank[jrep]++; } } // Example usage public static void main(String[] args) { int size = 5; DisjointSet ds = new DisjointSet(size); // Perform some union operations ds.unionByRank(0, 1); ds.unionByRank(2, 3); ds.unionByRank(1, 3); // Find the representative of each element and print // the result for (int i = 0; i System.out.println( 'Element ' + i + ' belongs to the set with representative ' + ds.find(i)); } } }>

>

>

Python3




class> DisjointSet:> >def> __init__(>self>, size):> >self>.parent>=> [i>for> i>in> range>(size)]> >self>.rank>=> [>0>]>*> size> > ># Function to find the representative (or the root node) of a set> >def> find(>self>, i):> ># If i is not the representative of its set, recursively find the representative> >if> self>.parent[i] !>=> i:> >self>.parent[i]>=> self>.find(>self>.parent[i])># Path compression> >return> self>.parent[i]> > ># Unites the set that includes i and the set that includes j by rank> >def> union_by_rank(>self>, i, j):> ># Find the representatives (or the root nodes) for the set that includes i and j> >irep>=> self>.find(i)> >jrep>=> self>.find(j)> > ># Elements are in the same set, no need to unite anything> >if> irep>=>=> jrep:> >return> > ># Get the rank of i's tree> >irank>=> self>.rank[irep]> > ># Get the rank of j's tree> >jrank>=> self>.rank[jrep]> > ># If i's rank is less than j's rank> >if> irank # Move i under j self.parent[irep] = jrep # Else if j's rank is less than i's rank elif jrank # Move j under i self.parent[jrep] = irep # Else if their ranks are the same else: # Move i under j (doesn't matter which one goes where) self.parent[irep] = jrep # Increment the result tree's rank by 1 self.rank[jrep] += 1 def main(self): # Example usage size = 5 ds = DisjointSet(size) # Perform some union operations ds.union_by_rank(0, 1) ds.union_by_rank(2, 3) ds.union_by_rank(1, 3) # Find the representative of each element for i in range(size): print(f'Element {i} belongs to the set with representative {ds.find(i)}') # Creating an instance and calling the main method ds = DisjointSet(size=5) ds.main()>

>

>

C#




using> System;> > class> DisjointSet {> >private> int>[] parent;> >private> int>[] rank;> > >public> DisjointSet(>int> size) {> >parent =>new> int>[size];> >rank =>new> int>[size];> > >// Initialize each element as a separate set> >for> (>int> i = 0; i parent[i] = i; rank[i] = 0; } } // Function to find the representative (or the root node) of a set private int Find(int i) { // If i is not the representative of its set, recursively find the representative if (parent[i] != i) { parent[i] = Find(parent[i]); // Path compression } return parent[i]; } // Unites the set that includes i and the set that includes j by rank public void UnionByRank(int i, int j) { // Find the representatives (or the root nodes) for the set that includes i and j int irep = Find(i); int jrep = Find(j); // Elements are in the same set, no need to unite anything if (irep == jrep) { return; } // Get the rank of i's tree int irank = rank[irep]; // Get the rank of j's tree int jrank = rank[jrep]; // If i's rank is less than j's rank if (irank // Move i under j parent[irep] = jrep; } // Else if j's rank is less than i's rank else if (jrank // Move j under i parent[jrep] = irep; } // Else if their ranks are the same else { // Move i under j (doesn't matter which one goes where) parent[irep] = jrep; // Increment the result tree's rank by 1 rank[jrep]++; } } static void Main() { // Example usage int size = 5; DisjointSet ds = new DisjointSet(size); // Perform some union operations ds.UnionByRank(0, 1); ds.UnionByRank(2, 3); ds.UnionByRank(1, 3); // Find the representative of each element for (int i = 0; i Console.WriteLine('Element ' + i + ' belongs to the set with representative ' + ds.Find(i)); } } }>

>

>

Javascript




// JavaScript Program for the above approach> unionbyrank(i, j) {> let irep =>this>.find(i);>// Find representative of set including i> let jrep =>this>.find(j);>// Find representative of set including j> > if> (irep === jrep) {> return>;>// Elements are already in the same set> }> > let irank =>this>.rank[irep];>// Rank of set including i> let jrank =>this>.rank[jrep];>// Rank of set including j> > if> (irank this.parent[irep] = jrep; // Make j's representative parent of i's representative } else if (jrank this.parent[jrep] = irep; // Make i's representative parent of j's representative } else { this.parent[irep] = jrep; // Make j's representative parent of i's representative this.rank[jrep]++; // Increment the rank of the resulting set }>

>

>

Unione per dimensione:

Ancora una volta, abbiamo bisogno di un nuovo array di numeri interi chiamato misurare[] . La dimensione di questo array è la stessa dell'array genitore Genitore[] . Se sono un rappresentante di un insieme, taglia[i] è il numero degli elementi nell'albero che rappresentano l'insieme.
Ora stiamo unendo due alberi (o insiemi), chiamiamoli destro e sinistro, poi in questo caso dipende tutto dal dimensione di sinistra e il dimensione del diritto albero (o insieme).

  • Se la dimensione di Sinistra è inferiore alla dimensione di Giusto , allora è meglio spostarsi sinistra sotto destra e aumentare la dimensione della destra in base alla dimensione della sinistra. Allo stesso modo, se la dimensione della destra è inferiore alla dimensione della sinistra, allora dovremmo spostarci da destra sotto sinistra. e aumentare la dimensione della sinistra in base alla dimensione della destra.
  • Se le dimensioni sono uguali, non importa quale albero va sotto l’altro.

C++




// Unites the set that includes i and the set> // that includes j by size> > #include> using> namespace> std;> > void> unionBySize(>int> i,>int> j) {> > >// Find the representatives (or the root nodes)> >// for the set that includes i> >int> irep = find(i);> > >// And do the same for the set that includes j> >int> jrep = find(j);> > >// Elements are in the same set, no need to> >// unite anything.> >if> (irep == jrep)> >return>;> > >// Get the size of i’s tree> >int> isize = Size[irep];> > >// Get the size of j’s tree> >int> jsize = Size[jrep];> > >// If i’s size is less than j’s size> >if> (isize // Then move i under j Parent[irep] = jrep; // Increment j's size by i's size Size[jrep] += Size[irep]; } // Else if j’s size is less than i’s size else { // Then move j under i Parent[jrep] = irep; // Increment i's size by j's size Size[irep] += Size[jrep]; } }>

>

>

Giava




// Java program for the above approach> import> java.util.Arrays;> > class> UnionFind {> > >private> int>[] Parent;> >private> int>[] Size;> > >public> UnionFind(>int> n)> >{> >// Initialize Parent array> >Parent =>new> int>[n];> >for> (>int> i =>0>; i Parent[i] = i; } // Initialize Size array with 1s Size = new int[n]; Arrays.fill(Size, 1); } // Function to find the representative (or the root // node) for the set that includes i public int find(int i) { if (Parent[i] != i) { // Path compression: Make the parent of i the // root of the set Parent[i] = find(Parent[i]); } return Parent[i]; } // Unites the set that includes i and the set that // includes j by size public void unionBySize(int i, int j) { // Find the representatives (or the root nodes) for // the set that includes i int irep = find(i); // And do the same for the set that includes j int jrep = find(j); // Elements are in the same set, no need to unite // anything. if (irep == jrep) return; // Get the size of i’s tree int isize = Size[irep]; // Get the size of j’s tree int jsize = Size[jrep]; // If i’s size is less than j’s size if (isize // Then move i under j Parent[irep] = jrep; // Increment j's size by i's size Size[jrep] += Size[irep]; } // Else if j’s size is less than i’s size else { // Then move j under i Parent[jrep] = irep; // Increment i's size by j's size Size[irep] += Size[jrep]; } } } public class GFG { public static void main(String[] args) { // Example usage int n = 5; UnionFind unionFind = new UnionFind(n); // Perform union operations unionFind.unionBySize(0, 1); unionFind.unionBySize(2, 3); unionFind.unionBySize(0, 4); // Print the representative of each element after // unions for (int i = 0; i System.out.println('Element ' + i + ': Representative = ' + unionFind.find(i)); } } } // This code is contributed by Susobhan Akhuli>

>

>

Python3




# Python program for the above approach> class> UnionFind:> >def> __init__(>self>, n):> ># Initialize Parent array> >self>.Parent>=> list>(>range>(n))> > ># Initialize Size array with 1s> >self>.Size>=> [>1>]>*> n> > ># Function to find the representative (or the root node) for the set that includes i> >def> find(>self>, i):> >if> self>.Parent[i] !>=> i:> ># Path compression: Make the parent of i the root of the set> >self>.Parent[i]>=> self>.find(>self>.Parent[i])> >return> self>.Parent[i]> > ># Unites the set that includes i and the set that includes j by size> >def> unionBySize(>self>, i, j):> ># Find the representatives (or the root nodes) for the set that includes i> >irep>=> self>.find(i)> > ># And do the same for the set that includes j> >jrep>=> self>.find(j)> > ># Elements are in the same set, no need to unite anything.> >if> irep>=>=> jrep:> >return> > ># Get the size of i’s tree> >isize>=> self>.Size[irep]> > ># Get the size of j’s tree> >jsize>=> self>.Size[jrep]> > ># If i’s size is less than j’s size> >if> isize # Then move i under j self.Parent[irep] = jrep # Increment j's size by i's size self.Size[jrep] += self.Size[irep] # Else if j’s size is less than i’s size else: # Then move j under i self.Parent[jrep] = irep # Increment i's size by j's size self.Size[irep] += self.Size[jrep] # Example usage n = 5 unionFind = UnionFind(n) # Perform union operations unionFind.unionBySize(0, 1) unionFind.unionBySize(2, 3) unionFind.unionBySize(0, 4) # Print the representative of each element after unions for i in range(n): print('Element {}: Representative = {}'.format(i, unionFind.find(i))) # This code is contributed by Susobhan Akhuli>

>

>

C#




using> System;> > class> UnionFind> {> >private> int>[] Parent;> >private> int>[] Size;> > >public> UnionFind(>int> n)> >{> >// Initialize Parent array> >Parent =>new> int>[n];> >for> (>int> i = 0; i { Parent[i] = i; } // Initialize Size array with 1s Size = new int[n]; for (int i = 0; i { Size[i] = 1; } } // Function to find the representative (or the root node) for the set that includes i public int Find(int i) { if (Parent[i] != i) { // Path compression: Make the parent of i the root of the set Parent[i] = Find(Parent[i]); } return Parent[i]; } // Unites the set that includes i and the set that includes j by size public void UnionBySize(int i, int j) { // Find the representatives (or the root nodes) for the set that includes i int irep = Find(i); // And do the same for the set that includes j int jrep = Find(j); // Elements are in the same set, no need to unite anything. if (irep == jrep) return; // Get the size of i’s tree int isize = Size[irep]; // Get the size of j’s tree int jsize = Size[jrep]; // If i’s size is less than j’s size if (isize { // Then move i under j Parent[irep] = jrep; // Increment j's size by i's size Size[jrep] += Size[irep]; } // Else if j’s size is less than i’s size else { // Then move j under i Parent[jrep] = irep; // Increment i's size by j's size Size[irep] += Size[jrep]; } } } class Program { static void Main() { // Example usage int n = 5; UnionFind unionFind = new UnionFind(n); // Perform union operations unionFind.UnionBySize(0, 1); unionFind.UnionBySize(2, 3); unionFind.UnionBySize(0, 4); // Print the representative of each element after unions for (int i = 0; i { Console.WriteLine($'Element {i}: Representative = {unionFind.Find(i)}'); } } }>

>

>

Javascript




unionbysize(i, j) {> >let irep =>this>.find(i);>// Find the representative of the set containing i.> >let jrep =>this>.find(j);>// Find the representative of the set containing j.> > >if> (irep === jrep) {> >return>;>// Elements are already in the same set.> >}> > >let isize =>this>.size[irep];>// Size of the set including i.> >let jsize =>this>.size[jrep];>// Size of the set including j.> > >if> (isize // If i's size is less than j's size, make i's representative // a child of j's representative. this.parent[irep] = jrep; this.size[jrep] += this.size[irep]; // Increment j's size by i's size. } else { // If j's size is less than or equal to i's size, make j's representative // a child of i's representative. this.parent[jrep] = irep; this.size[irep] += this.size[jrep]; // Increment i's size by j's size. if (isize === jsize) { // If sizes are equal, increment the rank of i's representative. this.rank[irep]++; } } }>

>

>

Produzione

Element 0: Representative = 0 Element 1: Representative = 0 Element 2: Representative = 2 Element 3: Representative = 2 Element 4: Representative = 0>

Complessità temporale : O(log n) senza compressione del percorso.

Di seguito è riportata l'implementazione completa dell'insieme disgiunto con compressione del percorso e unione per rango.

C++




// C++ implementation of disjoint set> > #include> using> namespace> std;> > class> DisjSet {> >int> *rank, *parent, n;> > public>:> > >// Constructor to create and> >// initialize sets of n items> >DisjSet(>int> n)> >{> >rank =>new> int>[n];> >parent =>new> int>[n];> >this>->n = n;> >makeSet();> >}> > >// Creates n single item sets> >void> makeSet()> >{> >for> (>int> i = 0; i parent[i] = i; } } // Finds set of given item x int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Do union of two sets by rank represented // by x and y. void Union(int x, int y) { // Find current sets of x and y int xset = find(x); int yset = find(y); // If they are already in same set if (xset == yset) return; // Put smaller ranked item under // bigger ranked item if ranks are // different if (rank[xset] parent[xset] = yset; } else if (rank[xset]>rango[yset]) { genitore[yset] = xset; } // Se i ranghi sono gli stessi, incrementa // il rango. else { genitore[yset] = xset; rango[xset] = rango[xset] + 1; } } }; // Codice driver int main() { // Chiamata funzione DisjSet obj(5); oggetto.Unione(0, 2); oggetto.Unione(4, 2); oggetto.Unione(3, 1); if (oggetto.find(4) == oggetto.find(0)) cout<< 'Yes '; else cout << 'No '; if (obj.find(1) == obj.find(0)) cout << 'Yes '; else cout << 'No '; return 0; }>

>

>

Giava




// A Java program to implement Disjoint Set Data> // Structure.> import> java.io.*;> import> java.util.*;> > class> DisjointUnionSets {> >int>[] rank, parent;> >int> n;> > >// Constructor> >public> DisjointUnionSets(>int> n)> >{> >rank =>new> int>[n];> >parent =>new> int>[n];> >this>.n = n;> >makeSet();> >}> > >// Creates n sets with single item in each> >void> makeSet()> >{> >for> (>int> i =>0>; i // Initially, all elements are in // their own set. parent[i] = i; } } // Returns representative of x's set int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Unites the set that includes x and the set // that includes x void union(int x, int y) { // Find representatives of two sets int xRoot = find(x), yRoot = find(y); // Elements are in the same set, no need // to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank if (rank[xRoot] // Then move x under y so that depth // of tree remains less parent[xRoot] = yRoot; // Else if y's rank is less than x's rank else if (rank[yRoot] // Then move y under x so that depth of // tree remains less parent[yRoot] = xRoot; else // if ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } } // Driver code public class Main { public static void main(String[] args) { // Let there be 5 persons with ids as // 0, 1, 2, 3 and 4 int n = 5; DisjointUnionSets dus = new DisjointUnionSets(n); // 0 is a friend of 2 dus.union(0, 2); // 4 is a friend of 2 dus.union(4, 2); // 3 is a friend of 1 dus.union(3, 1); // Check if 4 is a friend of 0 if (dus.find(4) == dus.find(0)) System.out.println('Yes'); else System.out.println('No'); // Check if 1 is a friend of 0 if (dus.find(1) == dus.find(0)) System.out.println('Yes'); else System.out.println('No'); } }>

>

>

Python3




# Python3 program to implement Disjoint Set Data> # Structure.> > class> DisjSet:> >def> __init__(>self>, n):> ># Constructor to create and> ># initialize sets of n items> >self>.rank>=> [>1>]>*> n> >self>.parent>=> [i>for> i>in> range>(n)]> > > ># Finds set of given item x> >def> find(>self>, x):> > ># Finds the representative of the set> ># that x is an element of> >if> (>self>.parent[x] !>=> x):> > ># if x is not the parent of itself> ># Then x is not the representative of> ># its set,> >self>.parent[x]>=> self>.find(>self>.parent[x])> > ># so we recursively call Find on its parent> ># and move i's node directly under the> ># representative of this set> > >return> self>.parent[x]> > > ># Do union of two sets represented> ># by x and y.> >def> Union(>self>, x, y):> > ># Find current sets of x and y> >xset>=> self>.find(x)> >yset>=> self>.find(y)> > ># If they are already in same set> >if> xset>=>=> yset:> >return> > ># Put smaller ranked item under> ># bigger ranked item if ranks are> ># different> >if> self>.rank[xset] <>self>.rank[yset]:> >self>.parent[xset]>=> yset> > >elif> self>.rank[xset]>>self>.rank[yset]:> >self>.parent[yset]>=> xset> > ># If ranks are same, then move y under> ># x (doesn't matter which one goes where)> ># and increment rank of x's tree> >else>:> >self>.parent[yset]>=> xset> >self>.rank[xset]>=> self>.rank[xset]>+> 1> > # Driver code> obj>=> DisjSet(>5>)> obj.Union(>0>,>2>)> obj.Union(>4>,>2>)> obj.Union(>3>,>1>)> if> obj.find(>4>)>=>=> obj.find(>0>):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> if> obj.find(>1>)>=>=> obj.find(>0>):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > # This code is contributed by ng24_7.>

>

>

C#




// A C# program to implement> // Disjoint Set Data Structure.> using> System;> > class> DisjointUnionSets> {> >int>[] rank, parent;> >int> n;> > >// Constructor> >public> DisjointUnionSets(>int> n)> >{> >rank =>new> int>[n];> >parent =>new> int>[n];> >this>.n = n;> >makeSet();> >}> > >// Creates n sets with single item in each> >public> void> makeSet()> >{> >for> (>int> i = 0; i { // Initially, all elements are in // their own set. parent[i] = i; } } // Returns representative of x's set public int find(int x) { // Finds the representative of the set // that x is an element of if (parent[x] != x) { // if x is not the parent of itself // Then x is not the representative of // his set, parent[x] = find(parent[x]); // so we recursively call Find on its parent // and move i's node directly under the // representative of this set } return parent[x]; } // Unites the set that includes x and // the set that includes x public void union(int x, int y) { // Find representatives of two sets int xRoot = find(x), yRoot = find(y); // Elements are in the same set, // no need to unite anything. if (xRoot == yRoot) return; // If x's rank is less than y's rank if (rank[xRoot] // Then move x under y so that depth // of tree remains less parent[xRoot] = yRoot; // Else if y's rank is less than x's rank else if (rank[yRoot] // Then move y under x so that depth of // tree remains less parent[yRoot] = xRoot; else // if ranks are the same { // Then move y under x (doesn't matter // which one goes where) parent[yRoot] = xRoot; // And increment the result tree's // rank by 1 rank[xRoot] = rank[xRoot] + 1; } } } // Driver code class GFG { public static void Main(String[] args) { // Let there be 5 persons with ids as // 0, 1, 2, 3 and 4 int n = 5; DisjointUnionSets dus = new DisjointUnionSets(n); // 0 is a friend of 2 dus.union(0, 2); // 4 is a friend of 2 dus.union(4, 2); // 3 is a friend of 1 dus.union(3, 1); // Check if 4 is a friend of 0 if (dus.find(4) == dus.find(0)) Console.WriteLine('Yes'); else Console.WriteLine('No'); // Check if 1 is a friend of 0 if (dus.find(1) == dus.find(0)) Console.WriteLine('Yes'); else Console.WriteLine('No'); } } // This code is contributed by Rajput-Ji>

>

>

Javascript




class DisjSet {> >constructor(n) {> >this>.rank =>new> Array(n);> >this>.parent =>new> Array(n);> >this>.n = n;> >this>.makeSet();> >}> > >makeSet() {> >for> (let i = 0; i <>this>.n; i++) {> >this>.parent[i] = i;> >}> >}> > >find(x) {> >if> (>this>.parent[x] !== x) {> >this>.parent[x] =>this>.find(>this>.parent[x]);> >}> >return> this>.parent[x];> >}> > >Union(x, y) {> >let xset =>this>.find(x);> >let yset =>this>.find(y);> > >if> (xset === yset)>return>;> > >if> (>this>.rank[xset] <>this>.rank[yset]) {> >this>.parent[xset] = yset;> >}>else> if> (>this>.rank[xset]>>this>.rank[yset]) {> >this>.parent[yset] = xset;> >}>else> {> >this>.parent[yset] = xset;> >this>.rank[xset] =>this>.rank[xset] + 1;> >}> >}> }> > // usage example> let obj =>new> DisjSet(5);> obj.Union(0, 2);> obj.Union(4, 2);> obj.Union(3, 1);> > if> (obj.find(4) === obj.find(0)) {> >console.log(>'Yes'>);> }>else> {> >console.log(>'No'>);> }> if> (obj.find(1) === obj.find(0)) {> >console.log(>'Yes'>);> }>else> {> >console.log(>'No'>);> }>

>

>

Produzione

Yes No>

Complessità temporale : O(n) per creare n set di singoli elementi. Con le due tecniche di compressione del percorso con l'unione per rango/dimensione, la complessità temporale raggiungerà un tempo quasi costante. Si scopre che la finale complessità temporale ammortizzata è O(α(n)), dove α(n) è la funzione di Ackermann inversa, che cresce in modo molto costante (non supera nemmeno per n<10600circa).

Complessità spaziale: O(n) perché dobbiamo memorizzare n elementi nella struttura dati dell'insieme disgiunto.