logo

LCA per albero n-ario | Interrogazione costante O(1)

Abbiamo visto vari metodi con diverse complessità temporali per calcolare l'LCA nell'albero n-ario: -

Metodo 1: Metodo ingenuo (calcolando il percorso dalla radice al nodo) | O(n) per query  
Metodo 2: Utilizzando la decomposizione Sqrt | O(quadrato H)  
Metodo 3: Utilizzo dell'approccio DP a matrice sparsa | O(log) 

Studiamo un altro metodo che ha tempi di query più rapidi rispetto a tutti i metodi precedenti. Quindi il nostro obiettivo sarà quello di calcolare l'LCA tempo costante ~ O(1) . Vediamo come possiamo raggiungerlo. 

Metodo 4: utilizzo della query sull'intervallo minimo 

Abbiamo discusso LCA e RMQ per albero binario . Qui discutiamo la conversione del problema LCA in problema RMQ per l'albero n-ario. 

  Pre-requisites:-     LCA in Binary Tree using RMQ     RMQ using sparse table  

Concetto chiave: In questo metodo ridurremo il nostro problema LCA al problema RMQ (Range Minimum Query) su un array statico. Una volta fatto ciò, metteremo in relazione le query dell'intervallo minimo con le query LCA richieste. 

Il primo passo sarà scomporre l'albero in una matrice lineare piatta. Per fare questo possiamo applicare la camminata di Eulero. La passeggiata di Eulero fornirà l'attraversamento in preordine del grafico. Quindi eseguiremo una passeggiata di Eulero sull'albero e memorizzeremo i nodi in un array mentre li visitiamo. Questo processo riduce l'albero > 16901489_1309372785813855_1903972436_n' title=


Ora pensiamo in termini generali: consideriamo due nodi qualsiasi sull'albero. Ci sarà esattamente un percorso che collega entrambi i nodi e il nodo che ha il valore di profondità più piccolo nel percorso sarà l'LCA dei due nodi dati.
Ora prendiamo ad esempio due nodi distinti In E v nell'array del cammino di Eulero. Ora tutti gli elementi nel percorso da u a v si troveranno tra l'indice dei nodi u e v nell'array di cammino di Eulero. Pertanto dobbiamo solo calcolare il nodo con la profondità minima tra l'indice del nodo u e il nodo v nell'array di Eulero. 

Per questo manterremo un altro array che conterrà la profondità di tutti i nodi corrispondenti alla loro posizione nell'array di camminata di Eulero in modo da poter applicare su di esso il nostro algoritmo RMQ.

Di seguito è riportato l'array di camminata di Eulero parallelo al suo array di tracce di profondità. 

16934185_1309372782480522_1333490382_n' title=

attore saira banu


Esempio: - Considera due nodi nodo 6 E nodo 7 nell'array di Eulero. Per calcolare l'LCA del nodo 6 e del nodo 7 osserviamo il valore di profondità più piccolo per tutti i nodi tra il nodo 6 e il nodo 7. 
Perciò nodo 1 ha il più piccolo valore di profondità = 0 e quindi è la LCA per il nodo 6 e il nodo 7.

' title=

Implementazione:-  

We will be maintaining three arrays   1)  Euler Path   2)  Depth array   3)  First Appearance Index

Il percorso di Eulero e l'array di profondità sono gli stessi descritti sopra

Indice di prima apparizione FAI[] : L'array dell'indice di prima apparizione memorizzerà l'indice per la prima posizione di ogni nodo nell'array del percorso di Eulero. FAI[i] = Prima apparizione dell'i-esimo nodo nell'array Euler Walk. 

L'implementazione del metodo di cui sopra è riportata di seguito: -

Attuazione:

C++
// C++ program to demonstrate LCA of n-ary tree // in constant time. #include 'bits/stdc++.h' using namespace std; #define sz 101 vector < int > adj[sz]; // stores the tree vector < int > euler; // tracks the eulerwalk vector < int > depthArr; // depth for each node corresponding  // to eulerwalk int FAI[sz]; // stores first appearance index of every node int level[sz]; // stores depth for all nodes in the tree int ptr; // pointer to euler walk int dp[sz][18]; // sparse table int logn[sz]; // stores log values int p2[20]; // stores power of 2 void buildSparseTable(int n) {  // initializing sparse table  memset(dp-1sizeof(dp));  // filling base case values  for (int i=1; i<n; i++)  dp[i-1][0] = (depthArr[i]>depthArr[i-1])?i-1:i;  // dp to fill sparse table  for (int l=1; l<15; l++)  for (int i=0; i<n; i++)  if (dp[i][l-1]!=-1 and dp[i+p2[l-1]][l-1]!=-1)  dp[i][l] =  (depthArr[dp[i][l-1]]>depthArr[dp[i+p2[l-1]][l-1]])?  dp[i+p2[l-1]][l-1] : dp[i][l-1];  else  break; } int query(int lint r) {  int d = r-l;  int dx = logn[d];  if (l==r) return l;  if (depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]])  return dp[r-p2[dx]][dx];  else  return dp[l][dx]; } void preprocess() {  // memorizing powers of 2  p2[0] = 1;  for (int i=1; i<18; i++)  p2[i] = p2[i-1]*2;  // memorizing all log(n) values  int val = 1ptr=0;  for (int i=1; i<sz; i++)  {  logn[i] = ptr-1;  if (val==i)  {  val*=2;  logn[i] = ptr;  ptr++;  }  } } /**  * Euler Walk ( preorder traversal)  * converting tree to linear depthArray  * Time Complexity : O(n)  * */ void dfs(int curint prevint dep) {  // marking FAI for cur node  if (FAI[cur]==-1)  FAI[cur] = ptr;  level[cur] = dep;  // pushing root to euler walk  euler.push_back(cur);  // incrementing euler walk pointer  ptr++;  for (auto x:adj[cur])  {  if (x != prev)  {  dfs(xcurdep+1);  // pushing cur again in backtrack  // of euler walk  euler.push_back(cur);  // increment euler walk pointer  ptr++;  }  } } // Create Level depthArray corresponding // to the Euler walk Array void makeArr() {  for (auto x : euler)  depthArr.push_back(level[x]); } int LCA(int uint v) {  // trivial case  if (u==v)  return u;  if (FAI[u] > FAI[v])  swap(uv);  // doing RMQ in the required range  return euler[query(FAI[u] FAI[v])]; } void addEdge(int uint v) {  adj[u].push_back(v);  adj[v].push_back(u); } int main(int argc char const *argv[]) {  // constructing the described tree  int numberOfNodes = 8;  addEdge(12);  addEdge(13);  addEdge(24);  addEdge(25);  addEdge(26);  addEdge(37);  addEdge(38);  // performing required precalculations  preprocess();  // doing the Euler walk  ptr = 0;  memset(FAI-1sizeof(FAI));  dfs(100);  // creating depthArray corresponding to euler[]  makeArr();  // building sparse table  buildSparseTable(depthArr.size());  cout << 'LCA(67) : ' << LCA(67) << 'n';  cout << 'LCA(64) : ' << LCA(64) << 'n';  return 0; } 
Java
// Java program to demonstrate LCA of n-ary // tree in constant time. import java.util.ArrayList; import java.util.Arrays; class GFG{ static int sz = 101; @SuppressWarnings('unchecked') // Stores the tree static ArrayList<Integer>[] adj = new ArrayList[sz];  // Tracks the eulerwalk static ArrayList<Integer> euler = new ArrayList<>();  // Depth for each node corresponding static ArrayList<Integer> depthArr = new ArrayList<>();  // to eulerwalk // Stores first appearance index of every node static int[] FAI = new int[sz];  // Stores depth for all nodes in the tree static int[] level = new int[sz];  // Pointer to euler walk static int ptr; // Sparse table static int[][] dp = new int[sz][18]; // Stores log values static int[] logn = new int[sz]; // Stores power of 2 static int[] p2 = new int[20]; static void buildSparseTable(int n) {    // Initializing sparse table  for(int i = 0; i < sz; i++)  {  for(int j = 0; j < 18; j++)   {  dp[i][j] = -1;  }  }  // Filling base case values  for(int i = 1; i < n; i++)  dp[i - 1][0] = (depthArr.get(i) >   depthArr.get(i - 1)) ?   i - 1 : i;  // dp to fill sparse table  for(int l = 1; l < 15; l++)  for(int i = 0; i < n; i++)  if (dp[i][l - 1] != -1 &&  dp[i + p2[l - 1]][l - 1] != -1)  dp[i][l] = (depthArr.get(dp[i][l - 1]) >  depthArr.get(  dp[i + p2[l - 1]][l - 1])) ?   dp[i + p2[l - 1]][l - 1] :   dp[i][l - 1];  else  break; } static int query(int l int r)  {  int d = r - l;  int dx = logn[d];    if (l == r)  return l;    if (depthArr.get(dp[l][dx]) >   depthArr.get(dp[r - p2[dx]][dx]))  return dp[r - p2[dx]][dx];  else  return dp[l][dx]; } static void preprocess()  {    // Memorizing powers of 2  p2[0] = 1;  for(int i = 1; i < 18; i++)  p2[i] = p2[i - 1] * 2;  // Memorizing all log(n) values  int val = 1 ptr = 0;  for(int i = 1; i < sz; i++)   {  logn[i] = ptr - 1;  if (val == i)   {  val *= 2;  logn[i] = ptr;  ptr++;  }  } } // Euler Walk ( preorder traversal) converting // tree to linear depthArray  // Time Complexity : O(n) static void dfs(int cur int prev int dep) {    // Marking FAI for cur node  if (FAI[cur] == -1)  FAI[cur] = ptr;  level[cur] = dep;  // Pushing root to euler walk  euler.add(cur);  // Incrementing euler walk pointer  ptr++;  for(Integer x : adj[cur])  {  if (x != prev)  {  dfs(x cur dep + 1);  // Pushing cur again in backtrack  // of euler walk  euler.add(cur);  // Increment euler walk pointer  ptr++;  }  } } // Create Level depthArray corresponding // to the Euler walk Array static void makeArr() {  for(Integer x : euler)  depthArr.add(level[x]); } static int LCA(int u int v)  {    // Trivial case  if (u == v)  return u;  if (FAI[u] > FAI[v])  {  int temp = u;  u = v;  v = temp;  }  // Doing RMQ in the required range  return euler.get(query(FAI[u] FAI[v])); } static void addEdge(int u int v) {  adj[u].add(v);  adj[v].add(u); } // Driver code public static void main(String[] args) {  for(int i = 0; i < sz; i++)  {  adj[i] = new ArrayList<>();  }    // Constructing the described tree  int numberOfNodes = 8;  addEdge(1 2);  addEdge(1 3);  addEdge(2 4);  addEdge(2 5);  addEdge(2 6);  addEdge(3 7);  addEdge(3 8);  // Performing required precalculations  preprocess();  // Doing the Euler walk  ptr = 0;  Arrays.fill(FAI -1);  dfs(1 0 0);  // Creating depthArray corresponding to euler[]  makeArr();    // Building sparse table  buildSparseTable(depthArr.size());  System.out.println('LCA(67) : ' + LCA(6 7));  System.out.println('LCA(64) : ' + LCA(6 4)); } } // This code is contributed by sanjeev2552 
Python3
# Python program to demonstrate LCA of n-ary tree # in constant time. from typing import List # stores the tree adj = [[] for _ in range(101)] # tracks the eulerwalk euler = [] # depth for each node corresponding to eulerwalk depthArr = [] # stores first appearance index of every node FAI = [-1] * 101 # stores depth for all nodes in the tree level = [0] * 101 # pointer to euler walk ptr = 0 # sparse table dp = [[-1] * 18 for _ in range(101)] # stores log values logn = [0] * 101 # stores power of 2 p2 = [0] * 20 def buildSparseTable(n: int): # initializing sparse table for i in range(n): dp[i][0] = i-1 if depthArr[i] > depthArr[i-1] else i # dp to fill sparse table for l in range(1 15): for i in range(n): if dp[i][l-1] != -1 and dp[i+p2[l-1]][l-1] != -1: dp[i][l] = dp[i+p2[l-1]][l-1] if depthArr[dp[i][l-1] ] > depthArr[dp[i+p2[l-1]][l-1]] else dp[i][l-1] else: break def query(l: int r: int) -> int: d = r-l dx = logn[d] if l == r: return l if depthArr[dp[l][dx]] > depthArr[dp[r-p2[dx]][dx]]: return dp[r-p2[dx]][dx] else: return dp[l][dx] def preprocess(): global ptr # memorizing powers of 2 p2[0] = 1 for i in range(1 18): p2[i] = p2[i-1]*2 # memorizing all log(n) values val = 1 ptr = 0 for i in range(1 101): logn[i] = ptr-1 if val == i: val *= 2 logn[i] = ptr ptr += 1 def dfs(cur: int prev: int dep: int): global ptr # marking FAI for cur node if FAI[cur] == -1: FAI[cur] = ptr level[cur] = dep # pushing root to euler walk euler.append(cur) # incrementing euler walk pointer ptr += 1 for x in adj[cur]: if x != prev: dfs(x cur dep+1) # pushing cur again in backtrack # of euler walk euler.append(cur) # increment euler walk pointer ptr += 1 # Create Level depthArray corresponding # to the Euler walk Array def makeArr(): global depthArr for x in euler: depthArr.append(level[x]) def LCA(u: int v: int) -> int: # trivial case if u == v: return u if FAI[u] > FAI[v]: u v = v u # doing RMQ in the required range return euler[query(FAI[u] FAI[v])] def addEdge(u v): adj[u].append(v) adj[v].append(u) # constructing the described tree numberOfNodes = 8 addEdge(1 2) addEdge(1 3) addEdge(2 4) addEdge(2 5) addEdge(2 6) addEdge(3 7) addEdge(3 8) # performing required precalculations preprocess() # doing the Euler walk ptr = 0 FAI = [-1] * (numberOfNodes + 1) dfs(1 0 0) # creating depthArray corresponding to euler[] makeArr() # building sparse table buildSparseTable(len(depthArr)) print('LCA(67) : ' LCA(6 7)) print('LCA(64) : ' LCA(6 4)) 
C#
// C# program to demonstrate LCA of n-ary // tree in constant time. using System; using System.Collections.Generic; public class GFG {  static int sz = 101;  // Stores the tree  static List<int>[] adj = new List<int>[sz];    // Tracks the eulerwalk  static List<int> euler = new List<int>();    // Depth for each node corresponding  static List<int> depthArr = new List<int>();    // to eulerwalk  // Stores first appearance index of every node  static int[] FAI = new int[sz];    // Stores depth for all nodes in the tree  static int[] level = new int[sz];    // Pointer to euler walk  static int ptr;    // Sparse table  static int[] dp = new int[sz 18];    // Stores log values  static int[] logn = new int[sz];    // Stores power of 2  static int[] p2 = new int[20];    static void buildSparseTable(int n)  {  // Initializing sparse table  for(int i = 0; i < sz; i++)  {  for(int j = 0; j < 18; j++)   {  dp[ij] = -1;  }  }    // Filling base case values  for(int i = 1; i < n; i++)  dp[i - 10] = (depthArr[i] > depthArr[i - 1]) ? i - 1 : i;    // dp to fill sparse table  for(int l = 1; l < 15; l++)  for(int i = 0; i < n; i++)  if (dp[il - 1] != -1 && dp[i + p2[l - 1]l - 1] != -1)  dp[il] = (depthArr[dp[il - 1]] > depthArr[dp[i + p2[l - 1]l - 1]]) ? dp[i + p2[l - 1]l - 1] : dp[il - 1];  else  break;  }    static int query(int l int r)   {  int d = r - l;  int dx = logn[d];    if (l == r)  return l;    if (depthArr[dp[ldx]] > depthArr[dp[r - p2[dx]dx]])  return dp[r - p2[dx]dx];  else  return dp[ldx];  }    static void preprocess()   {  // Memorizing powers of 2  p2[0] = 1;  for(int i = 1; i < 18; i++)  p2[i] = p2[i - 1] * 2;    // Memorizing all log(n) values  int val = 1 ptr = 0;  for(int i = 1; i < sz; i++)   {  logn[i] = ptr - 1;  if (val == i)   {  val *= 2;  logn[i] = ptr;  ptr++;  }  }  }    // Euler Walk ( preorder traversal) converting  // tree to linear depthArray   // Time Complexity : O(n)  static void dfs(int cur int prev int dep)  {  // Marking FAI for cur node  if (FAI[cur] == -1)  FAI[cur] = ptr;    level[cur] = dep;    // Pushing root to euler walk  euler.Add(cur);    // Incrementing euler walk pointer  ptr++;    foreach (int x in adj[cur])  {  if (x != prev)  {  dfs(x cur dep + 1);    euler.Add(cur);    ptr++;  }  }  }    // Create Level depthArray corresponding  // to the Euler walk Array  static void makeArr()  {  foreach (int x in euler)  depthArr.Add(level[x]);  }    static int LCA(int u int v)   {  // Trivial case  if (u == v)  return u;    if (FAI[u] > FAI[v])  {  int temp = u;  u = v;  v = temp;  }    // Doing RMQ in the required range  return euler[query(FAI[u] FAI[v])];  }    static void addEdge(int u int v)  {  adj[u].Add(v);  adj[v].Add(u);  }  // Driver Code  static void Main(string[] args)  {  int sz = 9;  adj = new List<int>[sz];  for (int i = 0; i < sz; i++)  {  adj[i] = new List<int>();  }  // Constructing the described tree  int numberOfNodes = 8;  addEdge(1 2);  addEdge(1 3);  addEdge(2 4);  addEdge(2 5);  addEdge(2 6);  addEdge(3 7);  addEdge(3 8);  // Performing required precalculations  preprocess();  // Doing the Euler walk  ptr = 0;  Array.Fill(FAI -1);  dfs(1 0 0);  // Creating depthArray corresponding to euler[]  makeArr();  // Building sparse table  buildSparseTable(depthArr.Count);  Console.WriteLine('LCA(67) : ' + LCA(6 7));  Console.WriteLine('LCA(64) : ' + LCA(6 4));  }   } // This code is contributed by Prince Kumar 
JavaScript
let adj = []; for (let _ = 0; _ < 101; _++) {  adj.push([]); } // tracks the eulerwalk let euler = []; // depth for each node corresponding to eulerwalk let depthArr = []; // stores first appearance index of every node let FAI = new Array(101).fill(-1); // stores depth for all nodes in the tree let level = new Array(101).fill(0); // pointer to euler walk let ptr = 0; // sparse table let dp = []; for (let _ = 0; _ < 101; _++) {  dp.push(new Array(18).fill(-1)); } // stores log values let logn = new Array(101).fill(0); // stores power of 2 let p2 = new Array(20).fill(0); function buildSparseTable(n) {  // initializing sparse table  for (let i = 0; i < n; i++) {  dp[i][0] = i - 1 >= 0 && depthArr[i] > depthArr[i - 1] ? i - 1 : i;  }  // dp to fill sparse table  for (let l = 1; l < 15; l++) {  for (let i = 0; i < n; i++) {  if (  dp[i][l - 1] !== -1 &&  dp[i + p2[l - 1]][l - 1] !== -1  ) {  dp[i][l] =  depthArr[dp[i][l - 1]] >  depthArr[dp[i + p2[l - 1]][l - 1]]  ? dp[i + p2[l - 1]][l - 1]  : dp[i][l - 1];  } else {  break;  }  }  } } function query(l r) {  let d = r - l;  let dx = logn[d];  if (l === r) {  return l;  }  if (depthArr[dp[l][dx]] > depthArr[dp[r - p2[dx]][dx]]) {  return dp[r - p2[dx]][dx];  } else {  return dp[l][dx];  } } function preprocess() {  // memorizing powers of 2  p2[0] = 1;  for (let i = 1; i < 18; i++) {  p2[i] = p2[i - 1] * 2;  }  // memorizing all log(n) values  let val = 1;  ptr = 0;  for (let i = 1; i < 101; i++) {  logn[i] = ptr - 1;  if (val === i) {  val *= 2;  logn[i] = ptr;  ptr += 1;  }  } } function dfs(cur prev dep) {  // marking FAI for cur node  if (FAI[cur] === -1) {  FAI[cur] = ptr;  }  level[cur] = dep;  // pushing root to euler walk  euler.push(cur);  // incrementing euler walk pointer  ptr += 1;  for (let x of adj[cur]) {  if (x !== prev) {  dfs(x cur dep + 1);  // pushing cur again in backtrack  // of euler walk  euler.push(cur);  // increment euler walk pointer  ptr += 1;  }  } } // Create Level depthArray corresponding // to the Euler walk Array function makeArr() {  for (let x of euler) {  depthArr.push(level[x]);  } } function LCA(u v) {  // trivial case  if (u === v) {  return u;  }  if (FAI[u] > FAI[v]) {  [u v] = [v u];  }  // doing RMQ in the required range  return euler[query(FAI[u] FAI[v])]; } function addEdge(u v) {  adj[u].push(v);  adj[v].push(u); } // constructing the described tree let numberOfNodes = 8; addEdge(1 2); addEdge(1 3); addEdge(2 4); addEdge(2 5); addEdge(2 6); addEdge(3 7); addEdge(3 8); // performing required precalculations preprocess(); // doing the Euler walk ptr = 0; FAI = new Array(numberOfNodes + 1).fill(-1); dfs(1 0 0); // creating depthArray corresponding to euler[] makeArr(); // building sparse table buildSparseTable(depthArr.length); console.log('LCA(67) : ' LCA(6 7)); console.log('LCA(64) : ' LCA(6 4)); 

Produzione
LCA(67) : 1 LCA(64) : 2

Nota: Stiamo precalcolando tutta la potenza richiesta di 2 e anche tutti i valori di log richiesti per garantire una complessità temporale costante per ogni query. Altrimenti, se eseguissimo il calcolo del registro per ogni operazione di query, la nostra complessità temporale non sarebbe stata costante.

Complessità temporale: Il processo di conversione da LCA a RMQ viene eseguito da Euler Walk che prende SU) tempo. 
La pre-elaborazione per la tabella sparsa in RMQ richiede tempo O(nlogn) e la risposta a ciascuna query è un processo a tempo costante. Pertanto la complessità temporale complessiva è O(nlogn) - preelaborazione e O(1) per ogni query.

Spazio ausiliario: O(n+s)

 

quanto fa 10 su 60?
Crea quiz