Dato una serie di città e distanza tra ogni coppia di città, il problema è trovare il tour più breve possibile che visita ogni città esattamente una volta e torna al punto di partenza.

Ad esempio, considera il grafico mostrato nella figura sul lato destro. Un tour TSP nel grafico è 0-1-3-2-0. Il costo del tour è di 10+25+30+15 che è 80.
Abbiamo discusso di seguenti soluzioni
1) Programmazione ingenua e dinamica
2) Soluzione approssimativa usando MST
Branch e soluzione legata
Come visto negli articoli precedenti in Branch and Bound Method per il nodo corrente nell'albero calcoliamo un limite sulla migliore soluzione possibile che possiamo ottenere se giù per questo nodo. Se il limite sulla migliore soluzione possibile è peggiore del meglio attuale (meglio calcolato finora), ignoriamo il sottostruttura radicata con il nodo.
Si noti che il costo attraverso un nodo include due costi.
1) Costo per raggiungere il nodo dalla radice (quando raggiungiamo un nodo abbiamo questo costo calcolato)
2) Costo per raggiungere una risposta dal nodo corrente a una foglia (calcoliamo un limite su questo costo per decidere se ignorare o meno questo nodo).
- In caso di a problema di massimizzazione Un limite superiore ci dice la soluzione massima possibile se seguiamo il nodo dato. Per esempio in 0/1 zaino abbiamo usato un approccio avido per trovare un limite superiore .
- In caso di a problema di minimizzazione Un limite inferiore ci dice la soluzione minima possibile se seguiamo il nodo dato. Per esempio in Problema di assegnazione del lavoro Otteniamo un limite inferiore assegnando un lavoro di minor costo a un lavoratore.
In ramo e il limite, la parte impegnativa è trovare un modo per calcolare un limite alla migliore soluzione possibile. Di seguito è riportata un'idea utilizzata per calcolare i limiti per il problema del venditore di viaggio.
Il costo di qualsiasi tour può essere scritto come di seguito.
Cost of a tour T = (1/2) * ? (Sum of cost of two edges adjacent to u and in the tour T) where u ? V For every vertex u if we consider two edges through it in T and sum their costs. The overall sum for all vertices would be twice of cost of tour T (We have considered every edge twice.) (Sum of two tour edges adjacent to u) >= (sum of minimum weight two edges adjacent to u) Cost of any tour >= 1/2) * ? (Sum of cost of two minimum weight edges adjacent to u) where u ? V
Ad esempio, considera il grafico mostrato sopra. Di seguito sono riportati il costo minimo due bordi adiacenti a ogni nodo.
Node Least cost edges Total cost 0 (0 1) (0 2) 25 1 (0 1) (1 3) 35 2 (0 2) (2 3) 45 3 (0 3) (1 3) 45 Thus a lower bound on the cost of any tour = 1/2(25 + 35 + 45 + 45) = 75 Refer this for one more example.
Ora abbiamo un'idea del calcolo del limite inferiore. Vediamo come applicarlo all'albero di ricerca dello spazio. Iniziamo a elencare tutti i nodi possibili (preferibilmente in ordine lessicografico)
1. Il nodo radice: Senza perdita di generalità supponiamo che iniziamo dal Vertex '0' per il quale il limite inferiore è stato calcolato sopra.
Affrontare il livello 2: Il livello successivo elenca tutti i possibili vertici a cui possiamo andare (tenendo presente che in qualsiasi percorso un vertice deve avvenire solo una volta) che sono 1 2 3 ... N (si noti che il grafico è completo). Considera che stiamo calcolando per Vertex 1 da quando siamo passati da 0 a 1 il nostro tour ha ora incluso il bordo 0-1. Ciò ci consente di apportare le modifiche necessarie nel limite inferiore della radice.
Lower Bound for vertex 1 = Old lower bound - ((minimum edge cost of 0 + minimum edge cost of 1) / 2) + (edge cost 0-1)
Come funziona? Per includere il bordo 0-1 aggiungiamo il costo del bordo di 0-1 e sottraggiamo un peso del bordo in modo tale che il limite inferiore rimane il più stretto possibile, che sarebbe la somma dei bordi minimi di 0 e 1 diviso per 2. Chiaramente il bordo sottratto non può essere più piccolo di questo.
Affrontare altri livelli: Mentre passiamo al livello successivo, enumiamo di nuovo tutti i possibili vertici. Per il caso sopra che va oltre dopo 1 che controlliamo per 2 3 4 ... n.
Prendi in considerazione il limite inferiore per 2 quando ci spostavamo da 1 a 1 includiamo il bordo 1-2 al tour e alteriamo il nuovo limite inferiore per questo nodo.
Lower bound(2) = Old lower bound - ((second minimum edge cost of 1 + minimum edge cost of 2)/2) + edge cost 1-2)
Nota: l'unica modifica nella formula è che questa volta abbiamo incluso il secondo costo minimo per 1 perché il costo del bordo minimo è già stato sottratto al livello precedente.
C++
// C++ program to solve Traveling Salesman Problem // using Branch and Bound. #include using namespace std; const int N = 4; // final_path[] stores the final solution ie the // path of the salesman. int final_path[N+1]; // visited[] keeps track of the already visited nodes // in a particular path bool visited[N]; // Stores the final minimum weight of shortest tour. int final_res = INT_MAX; // Function to copy temporary solution to // the final solution void copyToFinal(int curr_path[]) { for (int i=0; i<N; i++) final_path[i] = curr_path[i]; final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i int firstMin(int adj[N][N] int i) { int min = INT_MAX; for (int k=0; k<N; k++) if (adj[i][k]<min && i != k) min = adj[i][k]; return min; } // function to find the second minimum edge cost // having an end at the vertex i int secondMin(int adj[N][N] int i) { int first = INT_MAX second = INT_MAX; for (int j=0; j<N; j++) { if (i == j) continue; if (adj[i][j] <= first) { second = first; first = adj[i][j]; } else if (adj[i][j] <= second && adj[i][j] != first) second = adj[i][j]; } return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[] void TSPRec(int adj[N][N] int curr_bound int curr_weight int level int curr_path[]) { // base case is when we have reached level N which // means we have covered all the nodes once if (level==N) { // check if there is an edge from last vertex in // path back to the first vertex if (adj[curr_path[level-1]][curr_path[0]] != 0) { // curr_res has the total weight of the // solution we got int curr_res = curr_weight + adj[curr_path[level-1]][curr_path[0]]; // Update final result and final path if // current result is better. if (curr_res < final_res) { copyToFinal(curr_path); final_res = curr_res; } } return; } // for any other level iterate for all vertices to // build the search space tree recursively for (int i=0; i<N; i++) { // Consider next vertex if it is not same (diagonal // entry in adjacency matrix and not visited // already) if (adj[curr_path[level-1]][i] != 0 && visited[i] == false) { int temp = curr_bound; curr_weight += adj[curr_path[level-1]][i]; // different computation of curr_bound for // level 2 from the other levels if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2); // curr_bound + curr_weight is the actual lower bound // for the node that we have arrived on // If current lower bound < final_res we need to explore // the node further if (curr_bound + curr_weight < final_res) { curr_path[level] = i; visited[i] = true; // call TSPRec for the next level TSPRec(adj curr_bound curr_weight level+1 curr_path); } // Else we have to prune the node by resetting // all changes to curr_weight and curr_bound curr_weight -= adj[curr_path[level-1]][i]; curr_bound = temp; // Also reset the visited array memset(visited false sizeof(visited)); for (int j=0; j<=level-1; j++) visited[curr_path[j]] = true; } } } // This function sets up final_path[] void TSP(int adj[N][N]) { int curr_path[N+1]; // Calculate initial lower bound for the root node // using the formula 1/2 * (sum of first min + // second min) for all edges. // Also initialize the curr_path and visited array int curr_bound = 0; memset(curr_path -1 sizeof(curr_path)); memset(visited 0 sizeof(curr_path)); // Compute initial bound for (int i=0; i<N; i++) curr_bound += (firstMin(adj i) + secondMin(adj i)); // Rounding off the lower bound to an integer curr_bound = (curr_bound&1)? curr_bound/2 + 1 : curr_bound/2; // We start at vertex 1 so the first vertex // in curr_path[] is 0 visited[0] = true; curr_path[0] = 0; // Call to TSPRec for curr_weight equal to // 0 and level 1 TSPRec(adj curr_bound 0 1 curr_path); } // Driver code int main() { //Adjacency matrix for the given graph int adj[N][N] = { {0 10 15 20} {10 0 35 25} {15 35 0 30} {20 25 30 0} }; TSP(adj); printf('Minimum cost : %dn' final_res); printf('Path Taken : '); for (int i=0; i<=N; i++) printf('%d ' final_path[i]); return 0; }
Java // Java program to solve Traveling Salesman Problem // using Branch and Bound. import java.util.*; class GFG { static int N = 4; // final_path[] stores the final solution ie the // path of the salesman. static int final_path[] = new int[N + 1]; // visited[] keeps track of the already visited nodes // in a particular path static boolean visited[] = new boolean[N]; // Stores the final minimum weight of shortest tour. static int final_res = Integer.MAX_VALUE; // Function to copy temporary solution to // the final solution static void copyToFinal(int curr_path[]) { for (int i = 0; i < N; i++) final_path[i] = curr_path[i]; final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i static int firstMin(int adj[][] int i) { int min = Integer.MAX_VALUE; for (int k = 0; k < N; k++) if (adj[i][k] < min && i != k) min = adj[i][k]; return min; } // function to find the second minimum edge cost // having an end at the vertex i static int secondMin(int adj[][] int i) { int first = Integer.MAX_VALUE second = Integer.MAX_VALUE; for (int j=0; j<N; j++) { if (i == j) continue; if (adj[i][j] <= first) { second = first; first = adj[i][j]; } else if (adj[i][j] <= second && adj[i][j] != first) second = adj[i][j]; } return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[] static void TSPRec(int adj[][] int curr_bound int curr_weight int level int curr_path[]) { // base case is when we have reached level N which // means we have covered all the nodes once if (level == N) { // check if there is an edge from last vertex in // path back to the first vertex if (adj[curr_path[level - 1]][curr_path[0]] != 0) { // curr_res has the total weight of the // solution we got int curr_res = curr_weight + adj[curr_path[level-1]][curr_path[0]]; // Update final result and final path if // current result is better. if (curr_res < final_res) { copyToFinal(curr_path); final_res = curr_res; } } return; } // for any other level iterate for all vertices to // build the search space tree recursively for (int i = 0; i < N; i++) { // Consider next vertex if it is not same (diagonal // entry in adjacency matrix and not visited // already) if (adj[curr_path[level-1]][i] != 0 && visited[i] == false) { int temp = curr_bound; curr_weight += adj[curr_path[level - 1]][i]; // different computation of curr_bound for // level 2 from the other levels if (level==1) curr_bound -= ((firstMin(adj curr_path[level - 1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level - 1]) + firstMin(adj i))/2); // curr_bound + curr_weight is the actual lower bound // for the node that we have arrived on // If current lower bound < final_res we need to explore // the node further if (curr_bound + curr_weight < final_res) { curr_path[level] = i; visited[i] = true; // call TSPRec for the next level TSPRec(adj curr_bound curr_weight level + 1 curr_path); } // Else we have to prune the node by resetting // all changes to curr_weight and curr_bound curr_weight -= adj[curr_path[level-1]][i]; curr_bound = temp; // Also reset the visited array Arrays.fill(visitedfalse); for (int j = 0; j <= level - 1; j++) visited[curr_path[j]] = true; } } } // This function sets up final_path[] static void TSP(int adj[][]) { int curr_path[] = new int[N + 1]; // Calculate initial lower bound for the root node // using the formula 1/2 * (sum of first min + // second min) for all edges. // Also initialize the curr_path and visited array int curr_bound = 0; Arrays.fill(curr_path -1); Arrays.fill(visited false); // Compute initial bound for (int i = 0; i < N; i++) curr_bound += (firstMin(adj i) + secondMin(adj i)); // Rounding off the lower bound to an integer curr_bound = (curr_bound==1)? curr_bound/2 + 1 : curr_bound/2; // We start at vertex 1 so the first vertex // in curr_path[] is 0 visited[0] = true; curr_path[0] = 0; // Call to TSPRec for curr_weight equal to // 0 and level 1 TSPRec(adj curr_bound 0 1 curr_path); } // Driver code public static void main(String[] args) { //Adjacency matrix for the given graph int adj[][] = {{0 10 15 20} {10 0 35 25} {15 35 0 30} {20 25 30 0} }; TSP(adj); System.out.printf('Minimum cost : %dn' final_res); System.out.printf('Path Taken : '); for (int i = 0; i <= N; i++) { System.out.printf('%d ' final_path[i]); } } } /* This code contributed by PrinciRaj1992 */
Python3 # Python3 program to solve # Traveling Salesman Problem using # Branch and Bound. import math maxsize = float('inf') # Function to copy temporary solution # to the final solution def copyToFinal(curr_path): final_path[:N + 1] = curr_path[:] final_path[N] = curr_path[0] # Function to find the minimum edge cost # having an end at the vertex i def firstMin(adj i): min = maxsize for k in range(N): if adj[i][k] < min and i != k: min = adj[i][k] return min # function to find the second minimum edge # cost having an end at the vertex i def secondMin(adj i): first second = maxsize maxsize for j in range(N): if i == j: continue if adj[i][j] <= first: second = first first = adj[i][j] elif(adj[i][j] <= second and adj[i][j] != first): second = adj[i][j] return second # function that takes as arguments: # curr_bound -> lower bound of the root node # curr_weight-> stores the weight of the path so far # level-> current level while moving # in the search space tree # curr_path[] -> where the solution is being stored # which would later be copied to final_path[] def TSPRec(adj curr_bound curr_weight level curr_path visited): global final_res # base case is when we have reached level N # which means we have covered all the nodes once if level == N: # check if there is an edge from # last vertex in path back to the first vertex if adj[curr_path[level - 1]][curr_path[0]] != 0: # curr_res has the total weight # of the solution we got curr_res = curr_weight + adj[curr_path[level - 1]] [curr_path[0]] if curr_res < final_res: copyToFinal(curr_path) final_res = curr_res return # for any other level iterate for all vertices # to build the search space tree recursively for i in range(N): # Consider next vertex if it is not same # (diagonal entry in adjacency matrix and # not visited already) if (adj[curr_path[level-1]][i] != 0 and visited[i] == False): temp = curr_bound curr_weight += adj[curr_path[level - 1]][i] # different computation of curr_bound # for level 2 from the other levels if level == 1: curr_bound -= ((firstMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2) else: curr_bound -= ((secondMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2) # curr_bound + curr_weight is the actual lower bound # for the node that we have arrived on. # If current lower bound < final_res # we need to explore the node further if curr_bound + curr_weight < final_res: curr_path[level] = i visited[i] = True # call TSPRec for the next level TSPRec(adj curr_bound curr_weight level + 1 curr_path visited) # Else we have to prune the node by resetting # all changes to curr_weight and curr_bound curr_weight -= adj[curr_path[level - 1]][i] curr_bound = temp # Also reset the visited array visited = [False] * len(visited) for j in range(level): if curr_path[j] != -1: visited[curr_path[j]] = True # This function sets up final_path def TSP(adj): # Calculate initial lower bound for the root node # using the formula 1/2 * (sum of first min + # second min) for all edges. Also initialize the # curr_path and visited array curr_bound = 0 curr_path = [-1] * (N + 1) visited = [False] * N # Compute initial bound for i in range(N): curr_bound += (firstMin(adj i) + secondMin(adj i)) # Rounding off the lower bound to an integer curr_bound = math.ceil(curr_bound / 2) # We start at vertex 1 so the first vertex # in curr_path[] is 0 visited[0] = True curr_path[0] = 0 # Call to TSPRec for curr_weight # equal to 0 and level 1 TSPRec(adj curr_bound 0 1 curr_path visited) # Driver code # Adjacency matrix for the given graph adj = [[0 10 15 20] [10 0 35 25] [15 35 0 30] [20 25 30 0]] N = 4 # final_path[] stores the final solution # i.e. the // path of the salesman. final_path = [None] * (N + 1) # visited[] keeps track of the already # visited nodes in a particular path visited = [False] * N # Stores the final minimum weight # of shortest tour. final_res = maxsize TSP(adj) print('Minimum cost :' final_res) print('Path Taken : ' end = ' ') for i in range(N + 1): print(final_path[i] end = ' ') # This code is contributed by ng24_7
C# // C# program to solve Traveling Salesman Problem // using Branch and Bound. using System; public class GFG { static int N = 4; // final_path[] stores the final solution ie the // path of the salesman. static int[] final_path = new int[N + 1]; // visited[] keeps track of the already visited nodes // in a particular path static bool[] visited = new bool[N]; // Stores the final minimum weight of shortest tour. static int final_res = Int32.MaxValue; // Function to copy temporary solution to // the final solution static void copyToFinal(int[] curr_path) { for (int i = 0; i < N; i++) final_path[i] = curr_path[i]; final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i static int firstMin(int[ ] adj int i) { int min = Int32.MaxValue; for (int k = 0; k < N; k++) if (adj[i k] < min && i != k) min = adj[i k]; return min; } // function to find the second minimum edge cost // having an end at the vertex i static int secondMin(int[ ] adj int i) { int first = Int32.MaxValue second = Int32.MaxValue; for (int j = 0; j < N; j++) { if (i == j) continue; if (adj[i j] <= first) { second = first; first = adj[i j]; } else if (adj[i j] <= second && adj[i j] != first) second = adj[i j]; } return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored // which // would later be copied to final_path[] static void TSPRec(int[ ] adj int curr_bound int curr_weight int level int[] curr_path) { // base case is when we have reached level N which // means we have covered all the nodes once if (level == N) { // check if there is an edge from last vertex in // path back to the first vertex if (adj[curr_path[level - 1] curr_path[0]] != 0) { // curr_res has the total weight of the // solution we got int curr_res = curr_weight + adj[curr_path[level - 1] curr_path[0]]; // Update final result and final path if // current result is better. if (curr_res < final_res) { copyToFinal(curr_path); final_res = curr_res; } } return; } // for any other level iterate for all vertices to // build the search space tree recursively for (int i = 0; i < N; i++) { // Consider next vertex if it is not same // (diagonal entry in adjacency matrix and not // visited already) if (adj[curr_path[level - 1] i] != 0 && visited[i] == false) { int temp = curr_bound; curr_weight += adj[curr_path[level - 1] i]; // different computation of curr_bound for // level 2 from the other levels if (level == 1) curr_bound -= ((firstMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2); else curr_bound -= ((secondMin(adj curr_path[level - 1]) + firstMin(adj i)) / 2); // curr_bound + curr_weight is the actual // lower bound for the node that we have // arrived on If current lower bound < // final_res we need to explore the node // further if (curr_bound + curr_weight < final_res) { curr_path[level] = i; visited[i] = true; // call TSPRec for the next level TSPRec(adj curr_bound curr_weight level + 1 curr_path); } // Else we have to prune the node by // resetting all changes to curr_weight and // curr_bound curr_weight -= adj[curr_path[level - 1] i]; curr_bound = temp; // Also reset the visited array Array.Fill(visited false); for (int j = 0; j <= level - 1; j++) visited[curr_path[j]] = true; } } } // This function sets up final_path[] static void TSP(int[ ] adj) { int[] curr_path = new int[N + 1]; // Calculate initial lower bound for the root node // using the formula 1/2 * (sum of first min + // second min) for all edges. // Also initialize the curr_path and visited array int curr_bound = 0; Array.Fill(curr_path -1); Array.Fill(visited false); // Compute initial bound for (int i = 0; i < N; i++) curr_bound += (firstMin(adj i) + secondMin(adj i)); // Rounding off the lower bound to an integer curr_bound = (curr_bound == 1) ? curr_bound / 2 + 1 : curr_bound / 2; // We start at vertex 1 so the first vertex // in curr_path[] is 0 visited[0] = true; curr_path[0] = 0; // Call to TSPRec for curr_weight equal to // 0 and level 1 TSPRec(adj curr_bound 0 1 curr_path); } // Driver code static public void Main() { // Adjacency matrix for the given graph int[ ] adj = { { 0 10 15 20 } { 10 0 35 25 } { 15 35 0 30 } { 20 25 30 0 } }; TSP(adj); Console.WriteLine('Minimum cost : ' + final_res); Console.Write('Path Taken : '); for (int i = 0; i <= N; i++) { Console.Write(final_path[i] + ' '); } } } // This code is contributed by Rohit Pradhan
JavaScript const N = 4; // final_path[] stores the final solution ie the // path of the salesman. let final_path = Array (N + 1).fill (-1); // visited[] keeps track of the already visited nodes // in a particular path let visited = Array (N).fill (false); // Stores the final minimum weight of shortest tour. let final_res = Number.MAX_SAFE_INTEGER; // Function to copy temporary solution to // the final solution function copyToFinal (curr_path){ for (let i = 0; i < N; i++){ final_path[i] = curr_path[i]; } final_path[N] = curr_path[0]; } // Function to find the minimum edge cost // having an end at the vertex i function firstMin (adj i){ let min = Number.MAX_SAFE_INTEGER; for (let k = 0; k < N; k++){ if (adj[i][k] < min && i !== k){ min = adj[i][k]; } } return min; } // function to find the second minimum edge cost // having an end at the vertex i function secondMin (adj i){ let first = Number.MAX_SAFE_INTEGER; let second = Number.MAX_SAFE_INTEGER; for (let j = 0; j < N; j++){ if (i == j){ continue; } if (adj[i][j] <= first){ second = first; first = adj[i][j]; } else if (adj[i][j] <= second && adj[i][j] !== first){ second = adj[i][j]; } } return second; } // function that takes as arguments: // curr_bound -> lower bound of the root node // curr_weight-> stores the weight of the path so far // level-> current level while moving in the search // space tree // curr_path[] -> where the solution is being stored which // would later be copied to final_path[] function TSPRec (adj curr_bound curr_weight level curr_path) { // base case is when we have reached level N which // means we have covered all the nodes once if (level == N) { // check if there is an edge from last vertex in // path back to the first vertex if (adj[curr_path[level - 1]][curr_path[0]] !== 0) { // curr_res has the total weight of the // solution we got let curr_res = curr_weight + adj[curr_path[level - 1]][curr_path[0]]; // Update final result and final path if // current result is better. if (curr_res < final_res) { copyToFinal (curr_path); final_res = curr_res; } } return; } // for any other level iterate for all vertices to // build the search space tree recursively for (let i = 0; i < N; i++){ // Consider next vertex if it is not same (diagonal // entry in adjacency matrix and not visited // already) if (adj[curr_path[level - 1]][i] !== 0 && !visited[i]){ let temp = curr_bound; curr_weight += adj[curr_path[level - 1]][i]; // different computation of curr_bound for // level 2 from the other levels if (level == 1){ curr_bound -= (firstMin (adj curr_path[level - 1]) + firstMin (adj i)) / 2; } else { curr_bound -= (secondMin (adj curr_path[level - 1]) + firstMin (adj i)) / 2; } // curr_bound + curr_weight is the actual lower bound // for the node that we have arrived on // If current lower bound < final_res we need to explore // the node further if (curr_bound + curr_weight < final_res){ curr_path[level] = i; visited[i] = true; // call TSPRec for the next level TSPRec (adj curr_bound curr_weight level + 1 curr_path); } // Else we have to prune the node by resetting // all changes to curr_weight and curr_bound curr_weight -= adj[curr_path[level - 1]][i]; curr_bound = temp; // Also reset the visited array visited.fill (false) for (var j = 0; j <= level - 1; j++) visited[curr_path[j]] = true; } } } // This function sets up final_path[] function TSP (adj) { let curr_path = Array (N + 1).fill (-1); // Calculate initial lower bound for the root node // using the formula 1/2 * (sum of first min + // second min) for all edges. // Also initialize the curr_path and visited array let curr_bound = 0; visited.fill (false); // compute initial bound for (let i = 0; i < N; i++){ curr_bound += firstMin (adj i) + secondMin (adj i); } // Rounding off the lower bound to an integer curr_bound = curr_bound == 1 ? (curr_bound / 2) + 1 : (curr_bound / 2); // We start at vertex 1 so the first vertex // in curr_path[] is 0 visited[0] = true; curr_path[0] = 0; // Call to TSPRec for curr_weight equal to // 0 and level 1 TSPRec (adj curr_bound 0 1 curr_path); } //Adjacency matrix for the given graph let adj =[[0 10 15 20] [10 0 35 25] [15 35 0 30] [20 25 30 0]]; TSP (adj); console.log (`Minimum cost:${final_res}`); console.log (`Path Taken:${final_path.join (' ')}`); // This code is contributed by anskalyan3.
Produzione :
Minimum cost : 80 Path Taken : 0 1 3 2 0
Il arrotondamento viene eseguito in questa riga di codice:
if (level==1) curr_bound -= ((firstMin(adj curr_path[level-1]) + firstMin(adj i))/2); else curr_bound -= ((secondMin(adj curr_path[level-1]) + firstMin(adj i))/2);
Nel ramo e nell'algoritmo TSP limitato calcoliamo un limite inferiore al costo totale della soluzione ottimale aggiungendo i costi di bordo minimi per ciascun vertice e quindi dividendo per due. Tuttavia, questo limite inferiore potrebbe non essere un numero intero. Per ottenere un limite inferiore intero possiamo usare arrotondamento.
Nel codice sopra la variabile Curr_Bound contiene l'attuale limite inferiore al costo totale della soluzione ottimale. Quando visitiamo un nuovo vertice a livello di livello calcoliamo un nuovo New_Bound con un nuovo limite prendendo la somma dei costi di vantaggio minimo per il nuovo vertice e i suoi due vicini più vicini. Aggiorniamo quindi la variabile Curr_Bound arrotondando New_Bound al numero intero più vicino.
Se il livello è 1, giriamo fino al numero intero più vicino. Questo perché finora abbiamo visitato un solo vertice e vogliamo essere conservativi nella nostra stima del costo totale della soluzione ottimale. Se il livello è maggiore di 1, utilizziamo una strategia di arrotondamento più aggressiva che tiene conto del fatto che abbiamo già visitato alcuni vertici e possiamo quindi fare una stima più accurata del costo totale della soluzione ottimale.
Complessità temporale: La complessità del caso peggiore di Branch e Bound rimane lo stesso di quella della forza bruta chiaramente perché nel peggiore dei casi potremmo non avere mai la possibilità di potare un nodo. Mentre in pratica funziona molto bene a seconda della diversa istanza del TSP. La complessità dipende anche dalla scelta della funzione di delimitazione in quanto sono quelli che decidono quanti nodi devono essere potati.
Riferimenti:
http://lcm.csa.iisc.ernet.in/dsa/node187.html