Dato un numero intero N il compito è trovare tutto soluzioni distinte al Problema delle n-regine Dove N le regine sono poste su un n*n scacchiera in modo tale che due regine non possano attaccarsi a vicenda.
Nota: Ogni soluzione è una configurazione unica di N regine rappresentate come una permutazione di [123....n] . Il numero al io th la posizione indica la fila della regina nel io th colonna. Per esempio [3142] mostra uno di questi layout.
Esempio:
Ingresso: n = 4
Produzione: [2 4 1 3] [3 1 4 2]![]()
Spiegazione: Queste sono le 2 possibili soluzioni.Ingresso: n = 2
Produzione: []
Spiegazione: Nessuna soluzione poiché le regine possono attaccarsi a vicenda in tutte le possibili configurazioni.
Sommario
- [Approccio ingenuo] Generando tutte le permutazioni utilizzando la ricorsione
- [Approccio previsto] Utilizzo del backtracking con potatura
- [Approccio alternativo] Backtracking utilizzando il mascheramento dei bit
[Approccio ingenuo] - Utilizzo della ricorsione - O(n! * n) Tempo e O(n) Spazio
Un'idea semplice per risolvere il Problema delle N-Regine è generare tutte le possibili permutazioni di [1 2 3 ...n] e poi controlla se rappresenta una configurazione N-Queens valida. Poiché ogni regina deve trovarsi in una riga e in una colonna diverse utilizzando le permutazioni automaticamente si prende cura di quelle regole. Ma dobbiamo ancora controllare che non ci siano due regine stessa diagonale.
Di seguito è riportato il implementazione:
C++//C++ program to find all solution of N queen problem //using recursion #include #include #include using namespace std; // Function to check if the current placement is safe bool isSafe(vector<int>& board int currRow int currCol) { // Check all previously placed queens for(int i = 0; i < board.size(); ++i) { int placedRow = board[i]; // Columns are 1-based int placedCol = i + 1; // Check if the queen is on the same diagonal if(abs(placedRow - currRow) == abs(placedCol - currCol)) { return false; // Not safe } } // Safe to place the queen return true; } // Recursive function to generate all possible permutations void nQueenUtil(int col int n vector<int>& board vector<vector<int>>& res vector<bool>& visited) { // If all queens are placed add into res if(col > n) { res.push_back(board); return; } // Try placing a queen in each row // of the current column for(int row = 1; row <= n; ++row) { // Check if the row is already used if(!visited[row]) { // Check if it's safe to place the queen if(isSafe(board row col)) { // Mark the row as used visited[row] = true; // Place the queen board.push_back(row); // Recur to place the next queen nQueenUtil(col + 1 n board res visited); // Backtrack: remove the queen board.pop_back(); // Unmark row visited[row] = false; } } } } // Main function to find all distinct // res to the n-queens puzzle vector<vector<int>> nQueen(int n) { vector<vector<int>> res; // Current board configuration vector<int> board; // Track used rows vector<bool> visited(n + 1 false); // Start solving from the first column nQueenUtil(1 n board res visited); return res; } int main() { int n = 4; vector<vector<int>> res = nQueen(n); for(int i = 0;i < res.size(); i++) { cout << '['; for(int j = 0; j < n; ++j) { cout << res[i][j]; if(j != n - 1) cout << ' '; } cout << ']n'; } return 0; }
Java //Java program to find all solution of N queen problem //using recursion import java.util.ArrayList; class GfG { // Check if placement is safe static boolean isSafe(ArrayList<Integer> board int currRow int currCol) { for(int i = 0; i < board.size(); i++) { int placedRow = board.get(i); int placedCol = i + 1; // Check diagonals if(Math.abs(placedRow - currRow) == Math.abs(placedCol - currCol)) { return false; // Not safe } } return true; // Safe to place } // Recursive utility to solve static void nQueenUtil(int col int n ArrayList<Integer> board ArrayList<ArrayList<Integer>> res boolean[] visited) { // If all queens placed add to res if(col > n) { res.add(new ArrayList<>(board)); return; } // Try each row in column for(int row = 1; row <= n; row++) { // If row not used if(!visited[row]) { // Check safety if(isSafe(board row col)) { // Mark row visited[row] = true; // Place queen board.add(row); // Recur for next column nQueenUtil(col + 1 n board res visited); // Backtrack board.remove(board.size()-1); visited[row] = false; } } } } // Function to solve N-Queen static ArrayList<ArrayList<Integer>> nQueen(int n) { ArrayList<ArrayList<Integer>> res = new ArrayList<>(); ArrayList<Integer> board = new ArrayList<>(); boolean[] visited = new boolean[n +1]; nQueenUtil(1 n board res visited); return res; } public static void main(String[] args) { int n = 4; ArrayList<ArrayList<Integer>> res = nQueen(n); for(ArrayList<Integer> row : res) { System.out.print('['); for(int i = 0; i < row.size(); i++) { System.out.print(row.get(i)); if(i != row.size()-1) System.out.print(' '); } System.out.println(']'); } } }
Python #Python program to find all solution of N queen problem #using recursion # Function to check if placement is safe def isSafe(board currRow currCol): for i in range(len(board)): placedRow = board[i] placedCol = i + 1 # Check diagonals if abs(placedRow - currRow) == abs(placedCol - currCol): return False # Not safe return True # Safe to place # Recursive utility to solve N-Queens def nQueenUtil(col n board res visited): # If all queens placed add to res if col > n: res.append(board.copy()) return # Try each row in column for row in range(1 n+1): # If row not used if not visited[row]: # Check safety if isSafe(board row col): # Mark row visited[row] = True # Place queen board.append(row) # Recur for next column nQueenUtil(col+1 n board res visited) # Backtrack board.pop() visited[row] = False # Main N-Queen solver def nQueen(n): res = [] board = [] visited = [False] * (n + 1) nQueenUtil(1 n board res visited) return res if __name__ == '__main__': n = 4 res = nQueen(n) for row in res: print(row)
C# //C# program to find all solution of N queen problem //using recursion using System; using System.Collections.Generic; class GfG { // Check if placement is safe static bool isSafe(List<int> board int currRow int currCol){ for (int i = 0; i < board.Count; i++) { int placedRow = board[i]; int placedCol = i + 1; // Check diagonals if (Math.Abs(placedRow - currRow) == Math.Abs(placedCol - currCol)) { return false; // Not safe } } return true; // Safe to place } // Recursive utility to solve static void nQueenUtil(int col int n List<int> board List<List<int> > res bool[] visited){ // If all queens placed add to res if (col > n) { res.Add(new List<int>(board)); return; } // Try each row in column for (int row = 1; row <= n; row++) { // If row not used if (!visited[row]) { // Check safety if (isSafe(board row col)) { // Mark row visited[row] = true; // Place queen board.Add(row); // Recur for next column nQueenUtil(col + 1 n board res visited); // Backtrack board.RemoveAt(board.Count - 1); visited[row] = false; } } } } // Main N-Queen solver static List<List<int>> nQueen(int n){ List<List<int> > res = new List<List<int> >(); List<int> board = new List<int>(); bool[] visited = new bool[n + 1]; nQueenUtil(1 n board res visited); return res; } static void Main(string[] args) { int n = 4; List<List<int>> res = nQueen(n); foreach (var temp in res) { Console.WriteLine('[' + String.Join(' ' temp) + ']'); } } }
JavaScript //JavaScript program to find all solution of N queen problem //using recursion // Function to check if placement is safe function isSafe(board currRow currCol){ for (let i = 0; i < board.length; i++) { let placedRow = board[i]; let placedCol = i + 1; // Check diagonals if (Math.abs(placedRow - currRow) === Math.abs(placedCol - currCol)) { return false; // Not safe } } return true; // Safe to place } // Recursive utility to solve N-Queens function nQueenUtil(col n board res visited){ // If all queens placed add to res if (col > n) { res.push([...board ]); return; } // Try each row in column for (let row = 1; row <= n; row++) { // If row not used if (!visited[row]) { // Check safety if (isSafe(board row col)) { // Mark row visited[row] = true; // Place queen board.push(row); // Recur for next column nQueenUtil(col + 1 n board res visited); // Backtrack board.pop(); visited[row] = false; } } } } // Main N-Queen solver function nQueen(n){ let res = []; let board = []; let visited = Array(n + 1).fill(false); nQueenUtil(1 n board res visited); return res; } // Driver code let n = 4; let res = nQueen(n); res.forEach(row => console.log(row));
Produzione
[2 4 1 3] [3 1 4 2]
Complessità temporale: O(n!*n) n! per generare tutto permutazioni e O(n) per la convalida di ciascuna permutazione.
Spazio ausiliario: SU)
stringa java contiene
[Approccio previsto] - Utilizzo del Backtracking con potatura - O(n!) Tempo e O(n) Spazio
Per ottimizzare l'approccio di cui sopra possiamo utilizzare fare marcia indietro con la potatura . Invece di generare tutte le possibili permutazioni, costruiamo la soluzione in modo incrementale mentre così facendo possiamo assicurarci ad ogni passaggio che la soluzione parziale rimanga valida. Se si verifica un conflitto, faremo immediatamente marcia indietro, questo aiuta evitando inutile calcoli .
Implementazione passo dopo passo :
- Inizia dalla prima colonna e prova a posizionare una regina in ogni riga.
- Mantieni gli array per tenere traccia di quali righe sono già occupati. Allo stesso modo per il monitoraggio maggiore E diagonali minori sono già occupati.
- Se una regina posizionamento conflitti con le regine esistenti saltare Quello riga E fare marcia indietro la regina per provare il prossimo possibile riga (potatura e marcia indietro durante il conflitto).
// C++ program to find all solution of N queen problem by // using backtracking and pruning #include #include #include using namespace std; // Utility function for solving the N-Queens // problem using backtracking. void nQueenUtil(int j int n vector<int> &board vector<bool> &rows vector<bool> &diag1 vector<bool> &diag2 vector<vector<int>> &res) { if (j > n) { // A solution is found res.push_back(board); return; } for (int i = 1; i <= n; ++i) { if (!rows[i] && !diag1[i + j] && !diag2[i - j + n]) { // Place queen rows[i] = diag1[i + j] = diag2[i - j + n] = true; board.push_back(i); // Recurse to the next column nQueenUtil(j + 1 n board rows diag1 diag2 res); // Remove queen (backtrack) board.pop_back(); rows[i] = diag1[i + j] = diag2[i - j + n] = false; } } } // Solves the N-Queens problem and returns // all valid configurations. vector<vector<int>> nQueen(int n) { vector<vector<int>> res; vector<int> board; // Rows occupied vector<bool> rows(n + 1 false); // Major diagonals (row + j) and Minor diagonals (row - col + n) vector<bool> diag1(2 * n + 1 false); vector<bool> diag2(2 * n + 1 false); // Start solving from the first column nQueenUtil(1 n board rows diag1 diag2 res); return res; } int main() { int n = 4; vector<vector<int>> res = nQueen(n); for (int i = 0; i < res.size(); i++) { cout << '['; for (int j = 0; j < n; ++j) { cout << res[i][j]; if (j != n - 1) cout << ' '; } cout << ']n'; } return 0; }
Java // Java program to find all solutions of the N-Queens problem // using backtracking and pruning import java.util.ArrayList; import java.util.List; class GfG { // Utility function for solving the N-Queens // problem using backtracking. static void nQueenUtil(int j int n ArrayList<Integer> board boolean[] rows boolean[] diag1 boolean[] diag2 ArrayList<ArrayList<Integer>> res) { if (j > n) { // A solution is found res.add(new ArrayList<>(board)); return; } for (int i = 1; i <= n; ++i) { if (!rows[i] && !diag1[i + j] && !diag2[i - j + n]) { // Place queen rows[i] = diag1[i + j] = diag2[i - j + n] = true; board.add(i); // Recurse to the next column nQueenUtil(j + 1 n board rows diag1 diag2 res); // Remove queen (backtrack) board.remove(board.size() - 1); rows[i] = diag1[i + j] = diag2[i - j + n] = false; } } } // Solves the N-Queens problem and returns // all valid configurations. static ArrayList<ArrayList<Integer>> nQueen(int n) { ArrayList<ArrayList<Integer>> res = new ArrayList<>(); ArrayList<Integer> board = new ArrayList<>(); // Rows occupied boolean[] rows = new boolean[n + 1]; // Major diagonals (row + j) and Minor diagonals (row - col + n) boolean[] diag1 = new boolean[2 * n + 1]; boolean[] diag2 = new boolean[2 * n + 1]; // Start solving from the first column nQueenUtil(1 n board rows diag1 diag2 res); return res; } public static void main(String[] args) { int n = 4; ArrayList<ArrayList<Integer>> res = nQueen(n); for (ArrayList<Integer> solution : res) { System.out.print('['); for (int i = 0; i < solution.size(); i++) { System.out.print(solution.get(i)); if (i != solution.size() - 1) { System.out.print(' '); } } System.out.println(']'); } } }
Python # Python program to find all solutions of the N-Queens problem # using backtracking and pruning def nQueenUtil(j n board rows diag1 diag2 res): if j > n: # A solution is found res.append(board[:]) return for i in range(1 n + 1): if not rows[i] and not diag1[i + j] and not diag2[i - j + n]: # Place queen rows[i] = diag1[i + j] = diag2[i - j + n] = True board.append(i) # Recurse to the next column nQueenUtil(j + 1 n board rows diag1 diag2 res) # Remove queen (backtrack) board.pop() rows[i] = diag1[i + j] = diag2[i - j + n] = False def nQueen(n): res = [] board = [] # Rows occupied rows = [False] * (n + 1) # Major diagonals (row + j) and Minor diagonals (row - col + n) diag1 = [False] * (2 * n + 1) diag2 = [False] * (2 * n + 1) # Start solving from the first column nQueenUtil(1 n board rows diag1 diag2 res) return res if __name__ == '__main__': n = 4 res = nQueen(n) for temp in res: print(temp)
C# // C# program to find all solutions of the N-Queens problem // using backtracking and pruning using System; using System.Collections.Generic; class GfG { // Utility function for solving the N-Queens // problem using backtracking. static void nQueenUtil(int j int n List<int> board bool[] rows bool[] diag1 bool[] diag2 List<List<int>> res) { if (j > n) { // A solution is found res.Add(new List<int>(board)); return; } for (int i = 1; i <= n; ++i) { if (!rows[i] && !diag1[i + j] && !diag2[i - j + n]) { // Place queen rows[i] = diag1[i + j] = diag2[i - j + n] = true; board.Add(i); // Recurse to the next column nQueenUtil(j + 1 n board rows diag1 diag2 res); // Remove queen (backtrack) board.RemoveAt(board.Count - 1); rows[i] = diag1[i + j] = diag2[i - j + n] = false; } } } // Solves the N-Queens problem and returns // all valid configurations. static List<List<int>> nQueen(int n) { List<List<int>> res = new List<List<int>>(); List<int> board = new List<int>(); // Rows occupied bool[] rows = new bool[n + 1]; // Major diagonals (row + j) and Minor diagonals (row - col + n) bool[] diag1 = new bool[2 * n + 1]; bool[] diag2 = new bool[2 * n + 1]; // Start solving from the first column nQueenUtil(1 n board rows diag1 diag2 res); return res; } static void Main(string[] args) { int n = 4; List<List<int>> res = nQueen(n); foreach (var temp in res) { Console.WriteLine('[' + String.Join(' ' temp) + ']'); } } }
JavaScript // JavaScript program to find all solutions of the N-Queens problem // using backtracking and pruning // Utility function for solving the N-Queens // problem using backtracking. function nQueenUtil(j n board rows diag1 diag2 res) { if (j > n) { // A solution is found res.push([...board]); return; } for (let i = 1; i <= n; ++i) { if (!rows[i] && !diag1[i + j] && !diag2[i - j + n]) { // Place queen rows[i] = diag1[i + j] = diag2[i - j + n] = true; board.push(i); // Recurse to the next column nQueenUtil(j + 1 n board rows diag1 diag2 res); // Remove queen (backtrack) board.pop(); rows[i] = diag1[i + j] = diag2[i - j + n] = false; } } } // Solves the N-Queens problem and returns // all valid configurations. function nQueen(n) { const res = []; const board = []; // Rows occupied const rows = Array(n + 1).fill(false); // Major diagonals (row + j) and Minor diagonals (row - col + n) const diag1 = Array(2 * n + 1).fill(false); const diag2 = Array(2 * n + 1).fill(false); // Start solving from the first column nQueenUtil(1 n board rows diag1 diag2 res); return res; } // Driver Code const n = 4; const res = nQueen(n); res.forEach(temp => console.log(temp));
Produzione
[2 4 1 3] [3 1 4 2]
Complessità temporale: O(n!) Per aver generato tutto permutazioni .
Spazio ausiliario: SU)
[Approccio alternativo] - Backtracking utilizzando il mascheramento dei bit
Per ottimizzare ulteriormente il fare marcia indietro approccio soprattutto per valori più grandi di N possiamo usare mascheramento dei bit per monitorare in modo efficiente occupato righe e diagonali. Mascheramento dei bit ci permette di usare numeri interi ( righe ld rd ) per tenere traccia delle righe e delle diagonali occupate utilizzando fast operazioni bit per bit per più veloce calcoli. L'approccio rimane lo stesso di cui sopra.
Di seguito è riportato il implementazione:
C++//C++ program to find all solution of N queen problem //using recursion #include #include using namespace std; // Function to check if the current placement is safe bool isSafe(int row int col int rows int ld int rd int n) { return !((rows >> row) & 1) && !((ld >> (row + col)) & 1) && !((rd >> (row - col + n)) & 1); } // Recursive function to generate all possible permutations void nQueenUtil(int col int n vector<int>& board vector<vector<int>>& res int rows int ld int rd) { // If all queens are placed add into res if(col > n) { res.push_back(board); return; } // Try placing a queen in each row // of the current column for(int row = 1; row <= n; ++row) { // Check if it's safe to place the queen if(isSafe(row col rows ld rd n)) { // Place the queen board.push_back(row); // Recur to place the next queen nQueenUtil(col + 1 n board res rows | (1 << row) (ld | (1 << (row + col))) (rd | (1 << (row - col + n)))); // Backtrack: remove the queen board.pop_back(); } } } // Main function to find all distinct // res to the n-queens puzzle vector<vector<int>> nQueen(int n) { vector<vector<int>> res; // Current board configuration vector<int> board; // Start solving from the first column nQueenUtil(1 n board res 0 0 0); return res; } int main() { int n = 4; vector<vector<int>> res = nQueen(n); for(int i = 0;i < res.size(); i++) { cout << '['; for(int j = 0; j < n; ++j) { cout << res[i][j]; if(j != n - 1) cout << ' '; } cout << ']n'; } return 0; }
Java // Java program to find all solution of N queen problem // using recursion import java.util.*; class GfG { // Function to check if the current placement is safe static boolean isSafe(int row int col int rows int ld int rd int n) { return !(((rows >> row) & 1) == 1) && !(((ld >> (row + col)) & 1) == 1) && !(((rd >> (row - col + n)) & 1) == 1); } // Recursive function to generate all possible permutations static void nQueenUtil(int col int n ArrayList<Integer> board ArrayList<ArrayList<Integer>> res int rows int ld int rd) { // If all queens are placed add into res if (col > n) { res.add(new ArrayList<>(board)); return; } // Try placing a queen in each row // of the current column for (int row = 1; row <= n; ++row) { // Check if it's safe to place the queen if (isSafe(row col rows ld rd n)) { // Place the queen board.add(row); // Recur to place the next queen nQueenUtil(col + 1 n board res rows | (1 << row) (ld | (1 << (row + col))) (rd | (1 << (row - col + n)))); // Backtrack: remove the queen board.remove(board.size() - 1); } } } // Main function to find all distinct // res to the n-queens puzzle static ArrayList<ArrayList<Integer>> nQueen(int n) { ArrayList<ArrayList<Integer>> res = new ArrayList<>(); // Current board configuration ArrayList<Integer> board = new ArrayList<>(); // Start solving from the first column nQueenUtil(1 n board res 0 0 0); return res; } public static void main(String[] args) { int n = 4; ArrayList<ArrayList<Integer>> res = nQueen(n); for (ArrayList<Integer> solution : res) { System.out.print('['); for (int j = 0; j < n; ++j) { System.out.print(solution.get(j)); if (j != n - 1) System.out.print(' '); } System.out.println(']'); } } }
Python # Python program to find all solution of N queen problem # using recursion # Function to check if the current placement is safe def isSafe(row col rows ld rd n): return not ((rows >> row) & 1) and not ((ld >> (row + col)) & 1) and not ((rd >> (row - col + n)) & 1) # Recursive function to generate all possible permutations def nQueenUtil(col n board res rows ld rd): # If all queens are placed add into res if col > n: res.append(board[:]) return # Try placing a queen in each row # of the current column for row in range(1 n + 1): # Check if it's safe to place the queen if isSafe(row col rows ld rd n): # Place the queen board.append(row) # Recur to place the next queen nQueenUtil(col + 1 n board res rows | (1 << row) (ld | (1 << (row + col))) (rd | (1 << (row - col + n)))) # Backtrack: remove the queen board.pop() # Main function to find all distinct # res to the n-queens puzzle def nQueen(n): res = [] # Current board configuration board = [] # Start solving from the first column nQueenUtil(1 n board res 0 0 0) return res if __name__ == '__main__': n = 4 res = nQueen(n) for solution in res: print('[' end='') for j in range(n): print(solution[j] end='') if j != n - 1: print(' ' end='') print(']')
C# // C# program to find all solution of N queen problem // using recursion using System; using System.Collections.Generic; class GfG { // Function to check if the current placement is safe static bool isSafe(int row int col int rows int ld int rd int n) { return !(((rows >> row) & 1) == 1) && !(((ld >> (row + col)) & 1) == 1) && !(((rd >> (row - col + n)) & 1) == 1); } // Recursive function to generate all possible permutations static void nQueenUtil(int col int n List<int> board List<List<int>> res int rows int ld int rd) { // If all queens are placed add into res if (col > n) { res.Add(new List<int>(board)); return; } // Try placing a queen in each row // of the current column for (int row = 1; row <= n; ++row) { // Check if it's safe to place the queen if (isSafe(row col rows ld rd n)) { // Place the queen board.Add(row); // Recur to place the next queen nQueenUtil(col + 1 n board res rows | (1 << row) (ld | (1 << (row + col))) (rd | (1 << (row - col + n)))); // Backtrack: remove the queen board.RemoveAt(board.Count - 1); } } } // Main function to find all distinct // res to the n-queens puzzle static List<List<int>> nQueen(int n) { List<List<int>> res = new List<List<int>>(); // Current board configuration List<int> board = new List<int>(); // Start solving from the first column nQueenUtil(1 n board res 0 0 0); return res; } static void Main() { int n = 4; List<List<int>> res = nQueen(n); foreach (var solution in res) { Console.Write('['); for (int j = 0; j < n; ++j) { Console.Write(solution[j]); if (j != n - 1) Console.Write(' '); } Console.WriteLine(']'); } } }
JavaScript // JavaScript program to find all solution of N queen problem // using recursion // Function to check if the current placement is safe function isSafe(row col rows ld rd n) { return !((rows >> row) & 1) && !((ld >> (row + col)) & 1) && !((rd >> (row - col + n)) & 1); } // Recursive function to generate all possible permutations function nQueenUtil(col n board res rows ld rd) { // If all queens are placed add into res if (col > n) { res.push([...board]); return; } // Try placing a queen in each row // of the current column for (let row = 1; row <= n; ++row) { // Check if it's safe to place the queen if (isSafe(row col rows ld rd n)) { // Place the queen board.push(row); // Recur to place the next queen nQueenUtil(col + 1 n board res rows | (1 << row) (ld | (1 << (row + col))) (rd | (1 << (row - col + n)))); // Backtrack: remove the queen board.pop(); } } } // Main function to find all distinct // res to the n-queens puzzle function nQueen(n) { let res = []; // Current board configuration let board = []; // Start solving from the first column nQueenUtil(1 n board res 0 0 0); return res; } // Driver Code let n = 4; let res = nQueen(n); for (let i = 0; i < res.length; i++) { process.stdout.write('['); for (let j = 0; j < n; ++j) { process.stdout.write(res[i][j].toString()); if (j !== n - 1) process.stdout.write(' '); } console.log(']'); }
Produzione
[2 4 1 3] [3 1 4 2]
Complessità temporale: O(n!) per generare tutte le permutazioni.
Complessità spaziale: SU)