La parola ' prova ' è un estratto dalla parola ' recupero '. Trie è una struttura dati ordinata basata su alberi che memorizza l'insieme di stringhe. Ha il numero di puntatori pari al numero di caratteri dell'alfabeto in ciascun nodo. Può cercare una parola nel dizionario con l'aiuto del prefisso della parola. Ad esempio, se assumiamo che tutte le stringhe siano formate dalle lettere ' UN ' A ' Con ' Nell'alfabeto inglese, ogni nodo trie può avere un massimo di 26 punti.
mappa java iteratore
Trie è anche conosciuto come albero digitale o albero dei prefissi. La posizione di un nodo nel Trie determina la chiave con cui quel nodo è connesso.
Proprietà del Trie per un insieme di stringhe:
- Il nodo radice del trie rappresenta sempre il nodo nullo.
- Ogni figlio di nodi è ordinato alfabeticamente.
- Ogni nodo può avere un massimo di 26 bambini (dalla A alla Z).
- Ogni nodo (eccetto la radice) può memorizzare una lettera dell'alfabeto.
Il diagramma seguente mostra una rappresentazione del trie per campana, orso, alesaggio, mazza, palla, stop, calcio e stack.
Operazioni di base di Trie
Ci sono tre operazioni nel Trie:
- Inserimento di un nodo
- Ricerca di un nodo
- Eliminazione di un nodo
Inserimento di un nodo nel Trie
La prima operazione è inserire un nuovo nodo nel trie. Prima di iniziare l’implementazione, è importante comprendere alcuni punti:
- Ogni lettera della chiave di input (parola) viene inserita come individuo nel Trie_node. Nota che i bambini indicano il livello successivo di nodi Trie.
- L'array di caratteri chiave funge da indice di figli.
- Se il nodo presente ha già un riferimento alla lettera presente, imposta il nodo presente su quel nodo referenziato. Altrimenti, crea un nuovo nodo, imposta la lettera in modo che sia uguale alla lettera attuale e inizia anche il nodo attuale con questo nuovo nodo.
- La lunghezza del carattere determina la profondità del trie.
Implementazione dell'inserimento di un nuovo nodo nel Trie
public class Data_Trie { private Node_Trie root; public Data_Trie(){ this.root = new Node_Trie(); } public void insert(String word){ Node_Trie current = root; int length = word.length(); for (int x = 0; x <length; x++){ char l="word.charAt(x);" node_trie node="current.getNode().get(L);" if (node="=" null){ (); current.getnode().put(l, node); } current="node;" current.setword(true); < pre> <h3>Searching a node in Trie</h3> <p>The second operation is to search for a node in a Trie. The searching operation is similar to the insertion operation. The search operation is used to search a key in the trie. The implementation of the searching operation is shown below.</p> <p>Implementation of search a node in the Trie</p> <pre> class Search_Trie { private Node_Trie Prefix_Search(String W) { Node_Trie node = R; for (int x = 0; x <w.length(); x++) { char curletter="W.charAt(x);" if (node.containskey(curletter)) node="node.get(curLetter);" } else return null; node; public boolean search(string w) node_trie !="null" && node.isend(); < pre> <h3>Deletion of a node in the Trie</h3> <p>The Third operation is the deletion of a node in the Trie. Before we begin the implementation, it is important to understand some points:</p> <ol class="points"> <li>If the key is not found in the trie, the delete operation will stop and exit it.</li> <li>If the key is found in the trie, delete it from the trie.</li> </ol> <p> <strong>Implementation of delete a node in the Trie</strong> </p> <pre> public void Node_delete(String W) { Node_delete(R, W, 0); } private boolean Node_delete(Node_Trie current, String W, int Node_index) { if (Node_index == W.length()) { if (!current.isEndOfWord()) { return false; } current.setEndOfWord(false); return current.getChildren().isEmpty(); } char A = W.charAt(Node_index); Node_Trie node = current.getChildren().get(A); if (node == null) { return false; } boolean Current_Node_Delete = Node_delete(node, W, Node_index + 1) && !node.isEndOfWord(); if (Current_Node_Delete) { current.getChildren().remove(A); return current.getChildren().isEmpty(); } return false; } </pre> <h2>Applications of Trie</h2> <p> <strong>1. Spell Checker</strong> </p> <p>Spell checking is a three-step process. First, look for that word in a dictionary, generate possible suggestions, and then sort the suggestion words with the desired word at the top.</p> <p>Trie is used to store the word in dictionaries. The spell checker can easily be applied in the most efficient way by searching for words on a data structure. Using trie not only makes it easy to see the word in the dictionary, but it is also simple to build an algorithm to include a collection of relevant words or suggestions.</p> <p> <strong>2. Auto-complete</strong> </p> <p>Auto-complete functionality is widely used on text editors, mobile applications, and the Internet. It provides a simple way to find an alternative word to complete the word for the following reasons.</p> <ul> <li>It provides an alphabetical filter of entries by the key of the node.</li> <li>We trace pointers only to get the node that represents the string entered by the user.</li> <li>As soon as you start typing, it tries to complete your input.</li> </ul> <p> <strong>3. Browser history</strong> </p> <p>It is also used to complete the URL in the browser. The browser keeps a history of the URLs of the websites you've visited.</p> <h2>Advantages of Trie</h2> <ol class="points"> <li>It can be insert faster and search the string than hash tables and binary search trees.</li> <li>It provides an alphabetical filter of entries by the key of the node.</li> </ol> <h2>Disadvantages of Trie</h2> <ol class="points"> <li>It requires more memory to store the strings.</li> <li>It is slower than the hash table.</li> </ol> <h2>Complete program in C++</h2> <pre> #include #include #include #define N 26 typedef struct TrieNode TrieNode; struct TrieNode { char info; TrieNode* child[N]; int data; }; TrieNode* trie_make(char info) { TrieNode* node = (TrieNode*) calloc (1, sizeof(TrieNode)); for (int i = 0; i <n; i++) node → child[i]="NULL;" data="0;" info="info;" return node; } void free_trienode(trienode* node) { for(int i="0;" < n; if (node !="NULL)" free_trienode(node child[i]); else continue; free(node); trie loop start trienode* trie_insert(trienode* flag, char* word) temp="flag;" for (int word[i] ; int idx="(int)" - 'a'; (temp child[idx]="=" null) child[idx]; }trie flag; search_trie(trienode* position="word[i]" child[position]="=" 0; child[position]; && 1) 1; check_divergence(trienode* len="strlen(word);" (len="=" 0) last_index="0;" len; child[position]) j="0;" <n; j++) (j child[j]) + break; last_index; find_longest_prefix(trienode* (!word || word[0]="=" '