Abbiamo già discusso di Albero binario con thread binario .
L'inserimento nell'albero con thread binari è simile all'inserimento nell'albero binario ma dovremo regolare i thread dopo l'inserimento di ciascun elemento.
Rappresentazione C del nodo con thread binario:
struct Node { struct Node *left *right; int info; // false if left pointer points to predecessor // in Inorder Traversal boolean lthread; // false if right pointer points to successor // in Inorder Traversal boolean rthread; }; Nella seguente spiegazione abbiamo considerato Albero di ricerca binario (BST) per l'inserimento poiché l'inserimento è definito da alcune regole nei BST.
Permettere tmp sia il nodo appena inserito . Durante l'inserimento si possono verificare tre casi:
Caso 1: Inserimento in albero vuoto
Entrambi i puntatori sinistro e destro di tmp verranno impostati su NULL e il nuovo nodo diventerà la radice.
archivio esperto
root = tmp; tmp -> left = NULL; tmp -> right = NULL;
Caso 2: quando viene inserito un nuovo nodo come figlio sinistro
Dopo aver inserito il nodo nella posizione corretta, dobbiamo fare in modo che i suoi fili sinistro e destro puntino rispettivamente nell'ordine del predecessore e del successore. Il nodo che era successore in ordine . Quindi i fili sinistro e destro del nuovo nodo saranno-
selezione html
tmp -> left = par ->left; tmp -> right = par;
Prima dell'inserimento il puntatore sinistro del genitore era un thread ma dopo l'inserimento sarà un collegamento che punta al nuovo nodo.
par -> lthread = false; par -> left = temp;
L'esempio seguente mostra un nodo inserito come figlio sinistro del suo genitore.

Dopo l'inserimento di 13

Il predecessore di 14 diventa il predecessore di 13, quindi lascia il filo di 13 punti a 10.
Il successore di 13 è 14 quindi il filo destro di 13 punta al figlio sinistro che è 13.
Il puntatore sinistro di 14 non è un thread ora punta al bambino sinistro che è 13.
Caso 3: quando il nuovo nodo viene inserito come figlio destro
Il genitore di tmp è il suo predecessore in ordine. Il nodo che era il successore in ordine del genitore è ora il successore in ordine di questo nodo tmp. Quindi i fili sinistro e destro del nuovo nodo saranno-
trova il mio iPhone da Android
tmp -> left = par; tmp -> right = par -> right;
Prima dell'inserimento il puntatore destro del genitore era un thread ma dopo l'inserimento sarà un collegamento che punta al nuovo nodo.
par -> rthread = false; par -> right = tmp;
L'esempio seguente mostra un nodo inserito come figlio destro del suo genitore.

Dopo 15 inserito

quando inizia q2?
Il successore di 14 diventa il successore di 15, quindi il filo destro di 15 punta a 16
Il predecessore di 15 è 14, quindi il filo sinistro da 15 punti a 14.
Il puntatore destro di 14 non è un thread ora punta al bambino destro che è 15.
Implementazione C++ per inserire un nuovo nodo nell'albero di ricerca binario threaded:
Come inserto BST standard cerchiamo il valore chiave nell'albero. Se la chiave è già presente allora si ritorna altrimenti la nuova chiave viene inserita nel punto in cui termina la ricerca. In BST la ricerca termina quando troviamo la chiave o quando raggiungiamo un puntatore NULL a sinistra o a destra. Qui tutti i puntatori NULL sinistro e destro vengono sostituiti da thread tranne il puntatore sinistro del primo nodo e il puntatore destro dell'ultimo nodo. Quindi qui la ricerca non avrà successo quando raggiungiamo un puntatore NULL o un thread.
Attuazione:
C++// Insertion in Threaded Binary Search Tree. #include using namespace std; struct Node { struct Node *left *right; int info; // False if left pointer points to predecessor // in Inorder Traversal bool lthread; // False if right pointer points to successor // in Inorder Traversal bool rthread; }; // Insert a Node in Binary Threaded Tree struct Node *insert(struct Node *root int ikey) { // Searching for a Node with given value Node *ptr = root; Node *par = NULL; // Parent of key to be inserted while (ptr != NULL) { // If key already exists return if (ikey == (ptr->info)) { printf('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr->info) { if (ptr -> lthread == false) ptr = ptr -> left; else break; } // Moving on right subtree. else { if (ptr->rthread == false) ptr = ptr -> right; else break; } } // Create a new node Node *tmp = new Node; tmp -> info = ikey; tmp -> lthread = true; tmp -> rthread = true; if (par == NULL) { root = tmp; tmp -> left = NULL; tmp -> right = NULL; } else if (ikey < (par -> info)) { tmp -> left = par -> left; tmp -> right = par; par -> lthread = false; par -> left = tmp; } else { tmp -> left = par; tmp -> right = par -> right; par -> rthread = false; par -> right = tmp; } return root; } // Returns inorder successor using rthread struct Node *inorderSuccessor(struct Node *ptr) { // If rthread is set we can quickly find if (ptr -> rthread == true) return ptr->right; // Else return leftmost child of right subtree ptr = ptr -> right; while (ptr -> lthread == false) ptr = ptr -> left; return ptr; } // Printing the threaded tree void inorder(struct Node *root) { if (root == NULL) printf('Tree is empty'); // Reach leftmost node struct Node *ptr = root; while (ptr -> lthread == false) ptr = ptr -> left; // One by one print successors while (ptr != NULL) { printf('%d 'ptr -> info); ptr = inorderSuccessor(ptr); } } // Driver Program int main() { struct Node *root = NULL; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); return 0; }
Java // Java program Insertion in Threaded Binary Search Tree. import java.util.*; public class solution { static class Node { Node left right; int info; // False if left pointer points to predecessor // in Inorder Traversal boolean lthread; // False if right pointer points to successor // in Inorder Traversal boolean rthread; }; // Insert a Node in Binary Threaded Tree static Node insert( Node root int ikey) { // Searching for a Node with given value Node ptr = root; Node par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { System.out.printf('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr . lthread == false) ptr = ptr . left; else break; } // Moving on right subtree. else { if (ptr.rthread == false) ptr = ptr . right; else break; } } // Create a new node Node tmp = new Node(); tmp . info = ikey; tmp . lthread = true; tmp . rthread = true; if (par == null) { root = tmp; tmp . left = null; tmp . right = null; } else if (ikey < (par . info)) { tmp . left = par . left; tmp . right = par; par . lthread = false; par . left = tmp; } else { tmp . left = par; tmp . right = par . right; par . rthread = false; par . right = tmp; } return root; } // Returns inorder successor using rthread static Node inorderSuccessor( Node ptr) { // If rthread is set we can quickly find if (ptr . rthread == true) return ptr.right; // Else return leftmost child of right subtree ptr = ptr . right; while (ptr . lthread == false) ptr = ptr . left; return ptr; } // Printing the threaded tree static void inorder( Node root) { if (root == null) System.out.printf('Tree is empty'); // Reach leftmost node Node ptr = root; while (ptr . lthread == false) ptr = ptr . left; // One by one print successors while (ptr != null) { System.out.printf('%d 'ptr . info); ptr = inorderSuccessor(ptr); } } // Driver Program public static void main(String[] args) { Node root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); } } //contributed by Arnab Kundu // This code is updated By Susobhan Akhuli
Python3 # Insertion in Threaded Binary Search Tree. class newNode: def __init__(self key): # False if left pointer points to # predecessor in Inorder Traversal self.info = key self.left = None self.right =None self.lthread = True # False if right pointer points to # successor in Inorder Traversal self.rthread = True # Insert a Node in Binary Threaded Tree def insert(root ikey): # Searching for a Node with given value ptr = root par = None # Parent of key to be inserted while ptr != None: # If key already exists return if ikey == (ptr.info): print('Duplicate Key !') return root par = ptr # Update parent pointer # Moving on left subtree. if ikey < ptr.info: if ptr.lthread == False: ptr = ptr.left else: break # Moving on right subtree. else: if ptr.rthread == False: ptr = ptr.right else: break # Create a new node tmp = newNode(ikey) if par == None: root = tmp tmp.left = None tmp.right = None elif ikey < (par.info): tmp.left = par.left tmp.right = par par.lthread = False par.left = tmp else: tmp.left = par tmp.right = par.right par.rthread = False par.right = tmp return root # Returns inorder successor using rthread def inorderSuccessor(ptr): # If rthread is set we can quickly find if ptr.rthread == True: return ptr.right # Else return leftmost child of # right subtree ptr = ptr.right while ptr.lthread == False: ptr = ptr.left return ptr # Printing the threaded tree def inorder(root): if root == None: print('Tree is empty') # Reach leftmost node ptr = root while ptr.lthread == False: ptr = ptr.left # One by one print successors while ptr != None: print(ptr.infoend=' ') ptr = inorderSuccessor(ptr) # Driver Code if __name__ == '__main__': root = None root = insert(root 20) root = insert(root 10) root = insert(root 30) root = insert(root 5) root = insert(root 16) root = insert(root 14) root = insert(root 17) root = insert(root 13) inorder(root) # This code is contributed by PranchalK
C# using System; // C# program Insertion in Threaded Binary Search Tree. public class solution { public class Node { public Node left right; public int info; // False if left pointer points to predecessor // in Inorder Traversal public bool lthread; // False if right pointer points to successor // in Inorder Traversal public bool rthread; } // Insert a Node in Binary Threaded Tree public static Node insert(Node root int ikey) { // Searching for a Node with given value Node ptr = root; Node par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { Console.Write('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr.lthread == false) { ptr = ptr.left; } else { break; } } // Moving on right subtree. else { if (ptr.rthread == false) { ptr = ptr.right; } else { break; } } } // Create a new node Node tmp = new Node(); tmp.info = ikey; tmp.lthread = true; tmp.rthread = true; if (par == null) { root = tmp; tmp.left = null; tmp.right = null; } else if (ikey < (par.info)) { tmp.left = par.left; tmp.right = par; par.lthread = false; par.left = tmp; } else { tmp.left = par; tmp.right = par.right; par.rthread = false; par.right = tmp; } return root; } // Returns inorder successor using rthread public static Node inorderSuccessor(Node ptr) { // If rthread is set we can quickly find if (ptr.rthread == true) { return ptr.right; } // Else return leftmost child of right subtree ptr = ptr.right; while (ptr.lthread == false) { ptr = ptr.left; } return ptr; } // Printing the threaded tree public static void inorder(Node root) { if (root == null) { Console.Write('Tree is empty'); } // Reach leftmost node Node ptr = root; while (ptr.lthread == false) { ptr = ptr.left; } // One by one print successors while (ptr != null) { Console.Write('{0:D} 'ptr.info); ptr = inorderSuccessor(ptr); } } // Driver Program public static void Main(string[] args) { Node root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); } } // This code is contributed by Shrikant13
JavaScript <script> // javascript program Insertion in Threaded Binary Search Tree. class Node { constructor(){ this.left = null this.right = null; this.info = 0; // False if left pointer points to predecessor // in Inorder Traversal this.lthread = false; // False if right pointer points to successor // in Inorder Traversal this.rthread = false; } } // Insert a Node in Binary Threaded Tree function insert(root ikey) { // Searching for a Node with given value var ptr = root; var par = null; // Parent of key to be inserted while (ptr != null) { // If key already exists return if (ikey == (ptr.info)) { document.write('Duplicate Key !n'); return root; } par = ptr; // Update parent pointer // Moving on left subtree. if (ikey < ptr.info) { if (ptr.lthread == false) ptr = ptr.left; else break; } // Moving on right subtree. else { if (ptr.rthread == false) ptr = ptr.right; else break; } } // Create a new node var tmp = new Node(); tmp.info = ikey; tmp.lthread = true; tmp.rthread = true; if (par == null) { root = tmp; tmp.left = null; tmp.right = null; } else if (ikey < (par.info)) { tmp.left = par.left; tmp.right = par; par.lthread = false; par.left = tmp; } else { tmp.left = par; tmp.right = par.right; par.rthread = false; par.right = tmp; } return root; } // Returns inorder successor using rthread function inorderSuccessor(ptr) { // If rthread is set we can quickly find if (ptr.rthread == true) return ptr.right; // Else return leftmost child of right subtree ptr = ptr.right; while (ptr.lthread == false) ptr = ptr.left; return ptr; } // Printing the threaded tree function inorder(root) { if (root == null) document.write('Tree is empty'); // Reach leftmost node var ptr = root; while (ptr.lthread == false) ptr = ptr.left; // One by one print successors while (ptr != null) { document.write(ptr.info+' '); ptr = inorderSuccessor(ptr); } } // Driver Program var root = null; root = insert(root 20); root = insert(root 10); root = insert(root 30); root = insert(root 5); root = insert(root 16); root = insert(root 14); root = insert(root 17); root = insert(root 13); inorder(root); // This code contributed by aashish1995 </script>
Produzione
5 10 13 14 16 17 20 30
Complessità temporale: O(log N)
salva il video di YouTube vlc
Complessità spaziale: O(1) poiché non viene utilizzato spazio aggiuntivo.
Crea quiz